Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging

Jiang Wei Zhao Huan Wang Guo-Cui Wang Xin-Ke Han Peng Sun Wen-Feng Ye Jia-Sheng Feng Sheng-Fei Zhang Yan

Citation:

Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging

Jiang Wei, Zhao Huan, Wang Guo-Cui, Wang Xin-Ke, Han Peng, Sun Wen-Feng, Ye Jia-Sheng, Feng Sheng-Fei, Zhang Yan
PDF
HTML
Get Citation
  • Fabricating integratable and high-efficiency optical polarization devices is one of the fundamentally important challenges in the field of terahertz optics. Compared with the traditional polarization materials such as quartz crystal and liquid crystal, MgO crystal is one of the most important potential candidates for fabricating terahertz optical devices due to its high transmittance in terahertz frequency region. To determine the birefringence characteristics of MgO crystal in the terahertz frequency region, the modulation of the polartization state of a terahtertz wave through a $\left\langle {100} \right\rangle $ crystalline MgO flake is studied using terahertz focal plane imaging method. Within this approach, the polarization of a terahertz wave can be intuitively identified from the imaging of the amplitude and the phase of the z-direction component of terahertz electronic field. By measuring the imaging of both the amplitude and the phase of terahertz field with and without passing through the $\left\langle {100} \right\rangle $ crystalline MgO flake, it is found that the left and right circularly polarized light are converted into perpendicular linearly-polarized light after passing through the MgO flake. The polarization direction of the linearly polarized light changes with the rotating of MgO flake along the direction perpendicular to the light propagation. The conversion between the linearly polarized light and the circularly polarized light is analyzed by using the Jones matrix approach. These properties indicate that the $\left\langle {100} \right\rangle $ crystalline MgO flake acts as a quarter wave plate for terahertz waves. To further identify the character of terahertz quarter wave plate, the refractive index of the ordinary and extrordinary light within terahertz frequency region of crystalline MgO crystal are measured by using transmission terahertz time-domain spectroscopy system. By comparing the phase difference between the ordinary and extraordinary light after passing through the MgO flake, it is shown that a quarter of wavelength difference between the ordinary and extraordinary light is obtained. These results indicate that the $\left\langle {100} \right\rangle $ crystalline MgO crystals can be used to fabricate quarter wave plates and relevant polarization devices in the terahertz band.
      Corresponding author: Han Peng, hanpeng0523@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774243, 11774246), the Youth Innovative Research Team of Capital Normal University, China (Grant No. 19530050146), and the Science and Technology Innovation Ability Construction Project of Capical Normal University, China (Grant Nos. 19530050170, 19530050180)
    [1]

    成彬彬, 李慧萍, 安健飞, 江舸, 邓贤进, 张健 2005 太赫兹科学与电子信息学报 13 843

    Cheng B B, Li H P, An J F, Jiang G, Deng X J, Zhang J 2005 J. Terahertz Sci. Electron. Inf. Technol. 13 843

    [2]

    沈飞, 应义斌 2009 光谱学与光谱分析 29 1445Google Scholar

    Shen F, Ying Y B 2009 Spectrosc. Spectral Anal. 29 1445Google Scholar

    [3]

    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med. Biol. 47 3853Google Scholar

    [4]

    韩晓, 安景新, 钟玲玲 2018 电子世界 3 5

    Han X, An J X, Zhong L L 2018 Electron. World 3 5

    [5]

    苏兴华, 于春香, 王瀚卿 2014 太赫兹科学与电子信息学报 12 37

    Su X H, Yu C X, Wang H Q 2014 J. Terahertz Sci. Electron. Inf. Technol. 12 37

    [6]

    Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R 2007 Chem. Phys. Lett. 434 227Google Scholar

    [7]

    Feng W 2012 J. Semicond. 33 0310011

    [8]

    Corinna L, Dandolo K, Filtenborg T, Skou-Hansen J, Jepsen P U 2015 Appl. Phys. A 121 981Google Scholar

    [9]

    Han P Y, CHO G C, Zhang X C 2000 Opt. Lett. 25 242Google Scholar

    [10]

    Gong Y D, Dong H, Hong M H 2009 34th International Conference On Infrared, Millimeter, And Terahertz Waves 1-2 57

    [11]

    Ramonova A G, Kibizov D D, Kozyrev E N, Zaalishvili V B, Grigorkina G S, Fukutani K, Magkoev T T 2018 Russ. J. Phys. Chem. A 92 122

    [12]

    Ren G H, Zhao H W, Zhang J B, Tian Z, Gu J Q, Ouyang C M, Han J G, Zhang W L 2017 Infrared Laser Eng. 46 08250011

    [13]

    Wiesauer K, Jordens C 2013 J. Infrared Milli Terahz Waves 34 663Google Scholar

    [14]

    Nick C J, van der Valk, Willemine A M, van der Marel, Paul C M, Planken 2005 Opt. Lett. 30 2802Google Scholar

    [15]

    Kanda N, Konishi K, Kuwata-Gonokami M 2007 Opt. Express 15 11117Google Scholar

    [16]

    Zhang R X, Cui Y, Sun W F, Zhang Y 2008 Appl. Opt. 47 6422Google Scholar

    [17]

    Wang X K, Cui Y, Sun W F, Ye J S, Zhang Y 2010 J. Opt. Soc. Am. A 27 2387Google Scholar

    [18]

    Wang X K, Shi J, Sun W F, Feng S F, Han P, Ye J S, Zhang Y 2016 Opt. Express 24 7178Google Scholar

    [19]

    Wang X K, Wang S, Xie Z W, Sun W F, Feng S F, Cui Y, Ye J S, Zhang Y 2014 Opt. Express 22 24622Google Scholar

    [20]

    Shang Y J, Wang X K, Sun W F, Han P, Yu Y, Feng S F, Ye J S, Zhang Y 2018 Opt. Lett. 43 5508Google Scholar

    [21]

    Fu M X, Quan B G, He J W, Yao Z H, Gu C Z, Li J J, Zhang Y 2016 Appl. Phys. Lett. 108 1219041

    [22]

    Boivin A, Wolf E 1965 Phys. Rev. 138 B1561Google Scholar

    [23]

    沈长宇, 金尚忠 2017 光学原理 (第2版) (北京: 清华大学出版社) 第184−188页

    Shen C Y, Jin S Z 2017 Principles of Optics (2th Ed.) (Beijing: Tsinghua University Press) pp184−188 (in Chinese)

    [24]

    姚启钧 2014 光学教程 (北京: 高等教育出版社) 第224页

    Yao Q J 2014 Optical Tutorial (Beijing: Higher Education Press) p224 (in Chinese)

  • 图 1  焦平面成像系统示意图

    Figure 1.  Schematic diagram of focal plane imaging system.

    图 2  基于会聚太赫兹波纵向场$ {E}_{z} $的偏振测定方法原理

    Figure 2.  Principle of polarization determination method based on the longitudinal field Ez of converged THz wave.

    图 3  (a) 左旋圆偏振光和右旋圆偏振光的相位和振幅图像; (b) 振动方向与水平夹角为0°, 50°, 90°和140°方向的线偏振光的相位和振幅图像. 上面为相位图像, 下面为振幅图像, 模拟频率均为0.62 THz

    Figure 3.  (a) Phase and amplitude images of left circular polarization and right circular polarization; (b) phase and amplitude images of linear polarization with 0°, 50°, 90° and 140°angles between the vibration direction and the horizontal. The top is the phase image, the bottom is the amplitude image, the simulation frequency is 0.62 THz.

    图 4  (a) 左旋圆偏振光和右旋圆偏振光的相位和振幅; (b), (c) 左右旋圆偏振分别照射样品时在不同角度下的结果

    Figure 4.  (a) Phase and amplitude of left and right circularly polarized light; (b), (c) the results of left and right circularly polarized light through the samples at different angles, respectively.

    图 5  (a), (b)空气、o光和e光的时域信号和频域信号; (c) o光和e光的折射率; (d) 在不同频率下o光和e光的折射率差值与波长之间的关系

    Figure 5.  (a), (b) The time domain signal and the frequency domain signal of air, ordinary light, and extraordinary light respectively; (c) the real part of the refractive index of ordinary light and extraordinary light; (d) relationship between the refractive index difference and wavelength at different frequencies.

  • [1]

    成彬彬, 李慧萍, 安健飞, 江舸, 邓贤进, 张健 2005 太赫兹科学与电子信息学报 13 843

    Cheng B B, Li H P, An J F, Jiang G, Deng X J, Zhang J 2005 J. Terahertz Sci. Electron. Inf. Technol. 13 843

    [2]

    沈飞, 应义斌 2009 光谱学与光谱分析 29 1445Google Scholar

    Shen F, Ying Y B 2009 Spectrosc. Spectral Anal. 29 1445Google Scholar

    [3]

    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med. Biol. 47 3853Google Scholar

    [4]

    韩晓, 安景新, 钟玲玲 2018 电子世界 3 5

    Han X, An J X, Zhong L L 2018 Electron. World 3 5

    [5]

    苏兴华, 于春香, 王瀚卿 2014 太赫兹科学与电子信息学报 12 37

    Su X H, Yu C X, Wang H Q 2014 J. Terahertz Sci. Electron. Inf. Technol. 12 37

    [6]

    Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R 2007 Chem. Phys. Lett. 434 227Google Scholar

    [7]

    Feng W 2012 J. Semicond. 33 0310011

    [8]

    Corinna L, Dandolo K, Filtenborg T, Skou-Hansen J, Jepsen P U 2015 Appl. Phys. A 121 981Google Scholar

    [9]

    Han P Y, CHO G C, Zhang X C 2000 Opt. Lett. 25 242Google Scholar

    [10]

    Gong Y D, Dong H, Hong M H 2009 34th International Conference On Infrared, Millimeter, And Terahertz Waves 1-2 57

    [11]

    Ramonova A G, Kibizov D D, Kozyrev E N, Zaalishvili V B, Grigorkina G S, Fukutani K, Magkoev T T 2018 Russ. J. Phys. Chem. A 92 122

    [12]

    Ren G H, Zhao H W, Zhang J B, Tian Z, Gu J Q, Ouyang C M, Han J G, Zhang W L 2017 Infrared Laser Eng. 46 08250011

    [13]

    Wiesauer K, Jordens C 2013 J. Infrared Milli Terahz Waves 34 663Google Scholar

    [14]

    Nick C J, van der Valk, Willemine A M, van der Marel, Paul C M, Planken 2005 Opt. Lett. 30 2802Google Scholar

    [15]

    Kanda N, Konishi K, Kuwata-Gonokami M 2007 Opt. Express 15 11117Google Scholar

    [16]

    Zhang R X, Cui Y, Sun W F, Zhang Y 2008 Appl. Opt. 47 6422Google Scholar

    [17]

    Wang X K, Cui Y, Sun W F, Ye J S, Zhang Y 2010 J. Opt. Soc. Am. A 27 2387Google Scholar

    [18]

    Wang X K, Shi J, Sun W F, Feng S F, Han P, Ye J S, Zhang Y 2016 Opt. Express 24 7178Google Scholar

    [19]

    Wang X K, Wang S, Xie Z W, Sun W F, Feng S F, Cui Y, Ye J S, Zhang Y 2014 Opt. Express 22 24622Google Scholar

    [20]

    Shang Y J, Wang X K, Sun W F, Han P, Yu Y, Feng S F, Ye J S, Zhang Y 2018 Opt. Lett. 43 5508Google Scholar

    [21]

    Fu M X, Quan B G, He J W, Yao Z H, Gu C Z, Li J J, Zhang Y 2016 Appl. Phys. Lett. 108 1219041

    [22]

    Boivin A, Wolf E 1965 Phys. Rev. 138 B1561Google Scholar

    [23]

    沈长宇, 金尚忠 2017 光学原理 (第2版) (北京: 清华大学出版社) 第184−188页

    Shen C Y, Jin S Z 2017 Principles of Optics (2th Ed.) (Beijing: Tsinghua University Press) pp184−188 (in Chinese)

    [24]

    姚启钧 2014 光学教程 (北京: 高等教育出版社) 第224页

    Yao Q J 2014 Optical Tutorial (Beijing: Higher Education Press) p224 (in Chinese)

  • [1] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [2] Wang Xin, Wang Jun-Lin. Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band. Acta Physica Sinica, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [3] Yan De-Xian, Li Jiu-Sheng, Wang Yi. High sensitivity terahertz refractive index sensor based on sunflower-shaped circular photonic crystal. Acta Physica Sinica, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [4] Niu Hai-Sha, Zhu Lian-Qing, Song Jian-Jun, Dong Ming-Li, Lou Xiao-Ping. Theoretical and experimental research on influence of cavity frequency difference in birefringent laser feedback system. Acta Physica Sinica, 2018, 67(15): 154201. doi: 10.7498/aps.67.20180230
    [5] Li Jian-Xin, Bai Cai-Xun, Liu Qin, Shen Yan, Xu Wen-Hui, Xu Yi-Xuan. Beam shearing characteristic analysis of interferometric hyperspectral imaging system. Acta Physica Sinica, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [6] Dai Bing, Wang Peng, Zhou Yu, You Cheng-Wu, Hu Jiang-Sheng, Yang Zhen-Gang, Wang Ke-Jia, Liu Jin-Song. Wavelet transform in the application of three-dimensional terahertz imaging for internal defect detection. Acta Physica Sinica, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [7] Li Chang-Sheng, Chen Jia. How to eliminate unwanted elasto-optical birefringence from optical devices. Acta Physica Sinica, 2016, 65(3): 037801. doi: 10.7498/aps.65.037801
    [8] Wang Wei, Yang Bo, Song Hong-Ru, Fan Yue. Characteristic analyses of high birefringence and two zero dispersion points photonic crystal fiber with octagonal lattices. Acta Physica Sinica, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [9] Wang Wei, Yang Bo. Dispersion and birefringence analysis of photonic crystal fiber with rhombus air-core structure. Acta Physica Sinica, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [10] Chen Yu-Ting-Wu, Han Peng-Yu, Kuo Mei-Ling, Lin Shawn-Yu, Zhang Xi-Cheng. Terahertz broadband antireflection photonic device with graded refractive indices. Acta Physica Sinica, 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [11] Wang Xiao-Yan, Li Shu-Guang, Liu Shuo, Zhang Lei, Yin Guo-Bing, Feng Rong-Pu. Midinfrared As2 S3 chalcogenide glass broadband normal dispersion photonic crystal fiber with high birefringence and high nonlinearity. Acta Physica Sinica, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [12] Fu Xiao-Xia, Chen Ming-Yang. Terahertz transmission optical fiber with low absorptionloss and high birefringence. Acta Physica Sinica, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [13] Wang Jing-Li, Yao Jian-Quan, Chen He-Ming, Bing Pi-Bin, Li Zhong-Yang, Zhong Kai. Design and study of high birefringent terahertz photonic crystal fiber with hybrid crystal lattice. Acta Physica Sinica, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [14] Bai Jin-Jun, Wang Chang-Hui, Huo Bing-Zhong, Wang Xiang-Hui, Chang Sheng-Jiang. A broadband low loss and high birefringence terahertz photonic bandgap photonic crystal fiber. Acta Physica Sinica, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [15] Yang Qian-Qian, Hou Lan-Tian. Octagonal photonic crystal fiber of birefringence. Acta Physica Sinica, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [16] Fu Bo, Li Shu-Guang, Yao Yan-Yan, Zhang Lei, Zhang Mei-Yan, Liu Si-Ying. Coupling characteristics of dual-core high birefringence photonic crystal fibers. Acta Physica Sinica, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [17] Yan Feng-Ping, Li Yi-Fan, Wang Lin, Gong Tao-Rong, Liu Peng, Liu Yang, Tao Pei-Lin, Qu Mei-Xia, Jian Shui-Sheng. Design and characteristics of a near-elliptic inner cladding High birefringent polarization-stable photonic crystal fiber. Acta Physica Sinica, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [18] Li Shu-Guang, Xing Guang-Long, Zhou Gui-Yao, Hou Lan-Tian. Numerical simulation of square-lattice photonic crystal fiber with high birefringence and low confinement loss. Acta Physica Sinica, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [19] Jia Wei-Guo, Yang Xing-Yu. Vector modulation instability in an arbitrary polarized direction in strong birefringence fibers. Acta Physica Sinica, 2005, 54(3): 1053-1058. doi: 10.7498/aps.54.1053
    [20] Qi Sheng-Wen, Yang Xiu-Qin, Chen Kuan, Zhang Chun-Ping, Zhang Lian-Shun, Wang Xin-Yu, Xu Tang, Liu Yong-Liang, Zhang Guang-Yin. Photoinduced birefringence in an azo-dye-doped polymer. Acta Physica Sinica, 2005, 54(7): 3189-3193. doi: 10.7498/aps.54.3189
Metrics
  • Abstract views:  5041
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2020
  • Accepted Date:  12 June 2020
  • Available Online:  14 October 2020
  • Published Online:  20 October 2020

/

返回文章
返回