Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and experimental study on line intensities of CO2 and CO transitions near 1.5 μm at high temperatures

Wang Min-Rui Cai Ting-Dong

Citation:

Theoretical and experimental study on line intensities of CO2 and CO transitions near 1.5 μm at high temperatures

Wang Min-Rui, Cai Ting-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Accurate spectroscopic parameters of probed species, especially the line strengths at high temperatures, are important for combustion diagnosis based on tunable diode laser absorption spectroscopy (TDLAS). However, most of the line strengths in databases are measured at normal atmospheric temperature and calculated at high temperatures. For example, the mostly used HITRAN database focuses on atmospheric conditions where the temperature ranging from 200-350 K. The high-temperature parameters in HITRAN database are obtained by calculation and the temperatures are limited to 3000 K. In this paper the line strengths of 30012-00001 transition band of CO2 and 3-0 transition band of CO at normal temperature (300 K) and some high temperatures (400-6000 K) are calculated using our calculated partition function and experimental transition moment squared and Herman-Waills factor coefficients. The total internal partition sums (TIPS) are calculated for CO2 and CO with the product approximation of the vibrational and the rotational partition functions. The vibrational partition function is calculated in harmonic oscillator approximation. For rotational partition sums, the centrifugal distortion corrections are taken into consideration. In order to validate the calculation, a high-temperature measurement system based on TDLAS is developed using a DFB diode laser near 1.573 μm. High-resolution absorption spectra of CO2 and CO can be recorded in a heated cell as a function of temperature and pressure. The 9 lines of CO2 30012-00001 band and 2 lines of CO 3-0 band have been measured by means of direct absorption spectroscopy in the temperature range of 300-800 K. The corresponding line strengths are inferred from the measured direct absorption spectrum. The calculated result and experimental data are compared with the HITRAN values. The calculated and measured data agree well with the existing databases (HITRAN 2012), the discrepancies being less than 3% for most of the probed transitions. All the results confirm the validity of the calculation of total partition function and the line strengths calculated. The variation of the line strength as a function of temperature for a certain transition is also discussed. While the lower state energy determines the equilibrium molecular population in the unabsorbing state as a function of temperature, how the line strength of a particular transition varies with temperature can also be controlled.
      Corresponding author: Cai Ting-Dong, caitingdong@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475068, 11104237), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.
    [1]

    Banwell C N, Mccash E M 1994 Fundamentals of Molecular Spectroscopy (4th edition)(New York: McGraw-Hill Higher Education) p21

    [2]

    Guelachvili G 1979 J. Mol. Spectrosc. 75 251

    [3]

    Picqué N, Guelachvili G, Dana V, Mandin J Y 2000 J. Mol. Struct. 517 427

    [4]

    Chackerian C, Freedman R., Giver L P, Brown L R 2001 J. Mol. Spectrosc. 210 119

    [5]

    Ogilvie J F, Cheah S L, Lee Y P, Sauer S P2002 Theor. Chem. Acc. 108 85

    [6]

    Campargue A, Karlovets E V, Kassi S 2015 J. Quant. Spectrosc. Radiat. Transfer 154 113

    [7]

    Lamouroux J, Gamache RR, Laraia A L, Hartmann J, Boulet C 2012 J. Quant. Spectrosc. Radiat.Transfer 113 991

    [8]

    Predoi-Cross A, Liu W, Murphy R, Povey C, Gamache RR, Laraia A L, McKellar A RW, Hurtmans D R, Devi V M 2010 J. Quant. Spectrosc. Radiat. Transfer 111 1065

    [9]

    Toth RA, Hunt RH, Plyler E K 1971 J. Mol. Spectrosc. 38 107

    [10]

    Boudjaadar D, Mandin J Y, Dana V, Picqué N, Guelachvili G 2006 J. Mol. Spectrosc. 236 158

    [11]

    Miller C E, Brown L R 2004 J. Mol. Spectrosc. 228 329

    [12]

    Teffo J L, Claveau C, Valentin A 1998 J. Quant. Spectrosc. Radiat. Transfer 59 151

    [13]

    Claveau C, Teffo J L, Hurtmans D, Valentin A 1998 J. Mol. Spectrosc. 189 153

    [14]

    Toth RA, Brown L R, Miller C E, Devi V M, Benner D C 2006 J. Mol. Spectrosc. 239 221

    [15]

    Song X S, Yang X D, Guo Y D, Wang J, Cheng X L, Ling-Hu L F 2007 Commun. Theor. Phys. 47 892

    [16]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache RR, Harrison J J, Hartmann J, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Roy RJ L, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [17]

    Chen W D, Kosterev A A, Tittel F K, Gao X M, Zhao W X 2008 Appl. Phys. B 90 311

    [18]

    Xia H, Dong F Z, Wu B, Zhang Z R, Pang T, Sun PS, Cui X J, Han L, Wang Y 2015 Chin. Phys. B 24 034204

    [19]

    Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803

    [20]

    Gamache RR, Kennedy S, Hawkins R, Rothman L S 2000 J. Mol. Struct. 517 407

    [21]

    Herzberg G 1947 Molecular Spectra and Molecular StructureII. Infrared and Raman Spectra of Polyatomic Molecules (New York: Van Nostrand) p76

    [22]

    Norton RH, Rinsland C P 1991 Appl. Opt. 30 389

    [23]

    McDowell RS 1988 J. Chem. Phys. 88 356

    [24]

    Song X S, Ling-Hu RF, Li D H, Yan A Y 2007 Chin J. At. Mol. Phys.24 647

    [25]

    Song X S, Cheng X L, Yang X D, Ling-Hu RF 2007 Acta Phys. Sin. 56 4428 (in Chinese) [宋晓书, 程新路, 杨向东, 令狐荣锋 2007 物理学报 56 4428]

    [26]

    Rachet F, Margottinmaclou M, Elazizi M, Henry A, Valentin A 1994 J. Mol. Spectrosc. 164 196

    [27]

    Liu X 2006 Ph. D. Dissertation (California: Stanford University)

  • [1]

    Banwell C N, Mccash E M 1994 Fundamentals of Molecular Spectroscopy (4th edition)(New York: McGraw-Hill Higher Education) p21

    [2]

    Guelachvili G 1979 J. Mol. Spectrosc. 75 251

    [3]

    Picqué N, Guelachvili G, Dana V, Mandin J Y 2000 J. Mol. Struct. 517 427

    [4]

    Chackerian C, Freedman R., Giver L P, Brown L R 2001 J. Mol. Spectrosc. 210 119

    [5]

    Ogilvie J F, Cheah S L, Lee Y P, Sauer S P2002 Theor. Chem. Acc. 108 85

    [6]

    Campargue A, Karlovets E V, Kassi S 2015 J. Quant. Spectrosc. Radiat. Transfer 154 113

    [7]

    Lamouroux J, Gamache RR, Laraia A L, Hartmann J, Boulet C 2012 J. Quant. Spectrosc. Radiat.Transfer 113 991

    [8]

    Predoi-Cross A, Liu W, Murphy R, Povey C, Gamache RR, Laraia A L, McKellar A RW, Hurtmans D R, Devi V M 2010 J. Quant. Spectrosc. Radiat. Transfer 111 1065

    [9]

    Toth RA, Hunt RH, Plyler E K 1971 J. Mol. Spectrosc. 38 107

    [10]

    Boudjaadar D, Mandin J Y, Dana V, Picqué N, Guelachvili G 2006 J. Mol. Spectrosc. 236 158

    [11]

    Miller C E, Brown L R 2004 J. Mol. Spectrosc. 228 329

    [12]

    Teffo J L, Claveau C, Valentin A 1998 J. Quant. Spectrosc. Radiat. Transfer 59 151

    [13]

    Claveau C, Teffo J L, Hurtmans D, Valentin A 1998 J. Mol. Spectrosc. 189 153

    [14]

    Toth RA, Brown L R, Miller C E, Devi V M, Benner D C 2006 J. Mol. Spectrosc. 239 221

    [15]

    Song X S, Yang X D, Guo Y D, Wang J, Cheng X L, Ling-Hu L F 2007 Commun. Theor. Phys. 47 892

    [16]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache RR, Harrison J J, Hartmann J, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Roy RJ L, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [17]

    Chen W D, Kosterev A A, Tittel F K, Gao X M, Zhao W X 2008 Appl. Phys. B 90 311

    [18]

    Xia H, Dong F Z, Wu B, Zhang Z R, Pang T, Sun PS, Cui X J, Han L, Wang Y 2015 Chin. Phys. B 24 034204

    [19]

    Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803

    [20]

    Gamache RR, Kennedy S, Hawkins R, Rothman L S 2000 J. Mol. Struct. 517 407

    [21]

    Herzberg G 1947 Molecular Spectra and Molecular StructureII. Infrared and Raman Spectra of Polyatomic Molecules (New York: Van Nostrand) p76

    [22]

    Norton RH, Rinsland C P 1991 Appl. Opt. 30 389

    [23]

    McDowell RS 1988 J. Chem. Phys. 88 356

    [24]

    Song X S, Ling-Hu RF, Li D H, Yan A Y 2007 Chin J. At. Mol. Phys.24 647

    [25]

    Song X S, Cheng X L, Yang X D, Ling-Hu RF 2007 Acta Phys. Sin. 56 4428 (in Chinese) [宋晓书, 程新路, 杨向东, 令狐荣锋 2007 物理学报 56 4428]

    [26]

    Rachet F, Margottinmaclou M, Elazizi M, Henry A, Valentin A 1994 J. Mol. Spectrosc. 164 196

    [27]

    Liu X 2006 Ph. D. Dissertation (California: Stanford University)

  • [1] Hu Min-Li, Fang Fan, Fan Qun-Chao, Fan Zhi-Xiang, Li Hui-Dong, Fu Jia, Xie Feng. Theoretical study on macroscopic thermodynamic properties of NO+ ion system. Acta Physica Sinica, 2023, 72(16): 165101. doi: 10.7498/aps.72.20230541
    [2] Tao Meng-Meng, Wang Ya-Min, Wu Hao-Long, Li Guo-Hua, Wang Sheng, Tao Bo, Ye Jing-Feng, Feng Guo-Bin, Ye Xi-Sheng, Chen Wei-Biao. Hyperspectral absorption of water around 2 μm based on a boradband tunable, narrow linewidth Tm-doped fiber laser. Acta Physica Sinica, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [3] Zhang Ming-Ke, Gao Zhen-Wei, Gao Guang-Zhen, Jiang Yu-Hao, Cai Ting-Dong. Simultaneous detection of particle and C2H2 at high temperature using tunable diode laser extinction spectroscopy. Acta Physica Sinica, 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [4] Wang Qian-Jin, Sun Peng-Shuai, Zhang Zhi-Rong, Zhang Le-Wen, Yang Xi, Wu Bian, Pang Tao, Xia Hua, Li Qi-Yong. Separation and analysis method of overlapping absorption spectra with cross interference in gas mixture measurement. Acta Physica Sinica, 2021, 70(14): 144203. doi: 10.7498/aps.70.20210286
    [5] Tao Meng-Meng, Tao Bo, Ye Jing-Feng, Shen Yan-Long, Huang Ke, Ye Xi-Sheng, Zhao Jun. Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application. Acta Physica Sinica, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [6] Guan Lin-Qiang, Deng Hao, Yao Lu, Nie Wei, Xu Zhen-Yu, Li Xiang, Zang Yi-Peng, Hu Mai, Fan Xue-Li, Yang Chen-Guang, Kan Rui-Feng. Measurement of middle infrared spectroscopic parameters of carbon disulfide based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [7] Zhang Yun-Gang, Liu Ru-Hui, Wang Mei-Ting, Wang Yun-Xuan, Li Zhan-Xun, Tong Kai. Theoretical and experimental study of average reflection optical path length of diffuse cubic cavity. Acta Physica Sinica, 2018, 67(1): 016102. doi: 10.7498/aps.67.20171808
    [8] Cao Ya-Nan, Wang Gui-Shi, Tan Tu, Wang Lei, Mei Jiao-Xu, Cai Ting-Dong, Gao Xiao-Ming. Concentration and pressure measurement of water vapor in sealed glass containers based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [9] Lan Li-Juan, Ding Yan-Jun, Jia Jun-Wei, Du Yan-Jun, Peng Zhi-Min. Theoretical and experimental study of measuring gas temperature in vacuum environment using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [10] Cheng Si-Yang, Xu Liang, Gao Min-Guang, Jin Ling, Li Sheng, Feng Shu-Xiang, Liu Jian-Guo, Liu Wen-Qing. Study on remote sensing of carbon dioxide column concentration in the atmosphere by direct-sun infrared absorption spectroscopy. Acta Physica Sinica, 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [11] Chen Jiu-Ying, Liu Jian-Guo, He Ya-Bai, Wang Liao, Gang Qiang, Xu Zhen-Yu, Yao Lu, Yuan Song, Ruan Jun, He Jun-Feng, Dai Yun-Hai, Kan Rui-Feng. Study of CO2 spectroscopic parameters at high temperature near 2.0 μm. Acta Physica Sinica, 2013, 62(22): 224206. doi: 10.7498/aps.62.224206
    [12] Wu Dong-Lan, Wan Hui-Jun, Xie An-Dong, Cheng Xin-Lu, Yang Xiang-Dong. Study of the partition functions of SiO2 molecules. Acta Physica Sinica, 2009, 58(11): 7410-7413. doi: 10.7498/aps.58.7410
    [13] Song Xiao-Shu, Yu Chun-Ri, Yan An-Ying, Cheng Xin-Lu, Yang Xiang-Dong. Study on the high temperature line intensities of the symmetric-top molecule NH3. Acta Physica Sinica, 2009, 58(1): 223-228. doi: 10.7498/aps.58.223
    [14] Luo Ben-Yi, Lu Yi-Gang. Study of sound speed in near-critical carbon dioxide. Acta Physica Sinica, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [15] Song Xiao-Shu, Linghu Rong-Feng, Lü Bing, Cheng Xin-Lu, Yang Xiang-Dong. Study on high-temperature spectra of the asymptotic asymmetric-top molecule H122C16O. Acta Physica Sinica, 2008, 57(6): 3440-3445. doi: 10.7498/aps.57.3440
    [16] Song Xiao-Shu, Cheng Xin-Lu, Yang Xiang-Dong, Linghu Rong-Feng. Line intensities of 3000—0200 and 1001—0110 transition bands of 14N216O at high temperature. Acta Physica Sinica, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
    [17] Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu Jian-Guo, Dong Feng-Zhong, Gao Shan-Hu, Wang Min, Chen Jun. Absorption measurements of ambient methane with tunable diode laser. Acta Physica Sinica, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
    [18] Zhu Zhi-Yan, Zhu Zheng-He, Gao Tao, Jiang Gang. Statistical thermodynamics for equilibrium distribution of Au48+—Au52+ in Au plasma. Acta Physica Sinica, 2004, 53(10): 3330-3335. doi: 10.7498/aps.53.3330
    [19] Jia Jin-Feng, Wu Kai, Wang De-Zheng, Lv Si-Ye, Zhao Nu-Guang, Wu Si-Cheng. . Acta Physica Sinica, 1995, 44(2): 251-258. doi: 10.7498/aps.44.251
    [20] WANG TEH-MOU, HSU HOU-GHANG, CHANG TSUNG-SUI. CONFIGURATIONAL PARTITION FUNCTION OF BINARY SOLID SOLUTIONS. Acta Physica Sinica, 1957, 13(6): 525-542. doi: 10.7498/aps.13.525
Metrics
  • Abstract views:  4749
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2015
  • Accepted Date:  10 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回