Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of location and polarization of a dipole source on the excitation of a photonic crystal H1 cavity

Zhao Yan-Hui Qian Chen-Jiang Tang Jing Sun Yue Peng Kai Xu Xiu-Lai

Citation:

Effects of location and polarization of a dipole source on the excitation of a photonic crystal H1 cavity

Zhao Yan-Hui, Qian Chen-Jiang, Tang Jing, Sun Yue, Peng Kai, Xu Xiu-Lai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The integration of photonic crystal cavity with quantum dot paves the way for photonic-based quantum information processing. Photonic crystal cavity has a high-quality factor and small mode volume, which can be utilized to enhance the interaction between light and matter. Two degenerate fundamental modes with orthogonal polarizations exist in photonic crystal H1 cavity. Entangled photon pairs can be generated with a single quantum dot coupled to degenerate H1 cavity modes. Therefore a coupling system comprised of quantum dot and photonic crystal H1 cavity is a promising platform to implement quantum information processing. The excitations of cavity modes are mostly affected by the location of the single quantum dot, namely a dipole source. For the two degenerate photonic crystal H1 cavity modes, the location of the dipole source determines which mode is excited. In this paper, the effects of location and polarization of a dipole source on the excitation of photonic crystal H1 cavity are investigated with the finite-difference time-domain method, a numerical analysis technique for computing the electrodynamics. We first design a photonic crystal slab structure patterned with hexagonal lattice of air holes. Combining the light modulation by the period lattice in the slab plane and the total internal reflection in the perpendicular direction, photonic bandgap is generated, which inhibits the propagation of photon with certain frequencies. By removing one of the air holes from the photonic crystal slab, an H1 cavity is formed with two degenerate fundamental modes. One mode is x-polarized, and the other one is y-polarized. Next, a dipole source is used to excite the H1 cavity modes. When the dipole source is located at the left to the H1 cavity center, only y-polarized mode is excited. While locating the dipole source above the H1 cavity center, only x-polarized mode is excited. Therefore each degenerate mode of H1 cavity can be selectively excited with the diploe source located at different positions in the cavity. Following that, the H1 cavity modes excited with the dipole sources with different polarizations are also studied. The x-polarized dipole source can only excite the cavity mode with x-polarization, while the y-polarized dipole source can only excite the y-polarized cavity mode accordingly. It can be seen that the dipole source with specific polarization can only excite the modes with corresponding polarization. The effects of location and polarization of a dipole source on the excitation of a photonic crystal H1 cavity are important for understanding the fundamental physics of entangled photon generation with a coupled quantum dot and photonic crystal system.
      Corresponding author: Xu Xiu-Lai, xlxu@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB328706, 2014CB921003), the National Natural Science Foundation of China (Grant Nos. 91436101, 61275060), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030200) and the Hundred Talents Program of the Chinese Academy of Sciences.
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Chow E, Lin S Y, Johnson S G, Villeneuve P R, Joannopoulos J D, Wendt J R, Vawter G A, Zubrzycki W, Hou H, Alleman A 2000 Nature 407 983

    [4]

    Johnson S G, Fan S H, Villeneuve P R, Joannopoulos J D, Kolodziejski L A 1999 Phys. Rev. B 60 5751

    [5]

    Akahane Y, Asano T, Song B S, Noda S 2003 Nature 425 944

    [6]

    Chalcraft A R A, Lam S, OBrien D, Krauss T F, Sahin M, Szymanski D, Sanvitto D, Oulton R, Skolnick M S, Fox A M, Whittaker D M, Liu H Y, Hopkins M 2007 Appl. Phys. Lett. 90 241117

    [7]

    Takagi H, Ota Y, Kumagai N, Ishida S, Iwamoto S, Arakawa Y 2012 Opt. Express 20 28292

    [8]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200

    [9]

    Brossard F S F, Xu X L, Williams D A, Hadjipanayi M, Hugues M, Hopkinson M, Wang X, Taylor R A 2010 Appl. Phys. Lett. 97 111101

    [10]

    Badolato A, Winger M, Hennessy K J, Hu E L, Imamoğlu A 2008 C. R. Phys. 9 850

    [11]

    Tang J, Geng W D, Xu X L 2015 Sci. Rep. 5 09252

    [12]

    Cao S, Xu X L 2014 Phyisics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]

    [13]

    Mekis A, Chen J C, Kurland I, Fan S H, Villeneuve P R, Joannopoulos J D 1996 Phys. Rev. Lett. 77 3787

    [14]

    Atlasov K A, Karlsson K F, Rudra A, Dwir B, Kapon E 2008 Opt. Express 16 16255

    [15]

    Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T, Noda S 2012 Nat. Photon. 6 56

    [16]

    Faraon A, Waks E, Englund D, Fushman I, Vučković J 2007 Appl. Phys. Lett. 90 073102

    [17]

    Brossard F S F, Reid B P L, Chan C C S, Xu X L, Griffiths J P, Williams D A, Murray R, Taylor R A 2013 Opt. Express 21 16934

    [18]

    Zhao Y H, Qian C J, Qiu K S, Gao Y N, Xu X L 2015 Opt. Express 23 9211

    [19]

    Gao Y H, Xu X S 2014 Chin. Phys. B 23 114205

    [20]

    Kunz K S, Luebbers R J 1993 The Finite Difference Time Domain Method for Electromagnetics (Florida: CRC Press) pp1-367

    [21]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [22]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [23]

    Stace T M, Milburn G J, Barnes C H W 2003 Phys. Rev. B 67 085317

    [24]

    Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A, Malpuech G 2008 Phys. Rev. Lett. 100 240404

    [25]

    Larqu M, Karle T, Robert-Philip I, Beveratos A 2009 New J. Phys. 11 033022

    [26]

    Luxmoore I J, Ahmadi E D, Fox A M, Hugues M, Skolnick M S 2011 Appl. Phys. Lett. 98 041101

    [27]

    Luxmoore I J, Ahmadi E D, Luxmoore B J, Wasley N A, Tartakovskii A I, Hugues M, Skolnick M S, Fox A M 2012 Appl. Phys. Lett. 100 121116

    [28]

    Coles R J, Prtljaga N, Royall B, Luxmoore I J, Fox A M, Skolnick M S 2014 Opt. Express 22 2376

    [29]

    Bentham C, Itskevich I E, Coles R J, Royall B, Clarke E, OHara J, Prtljaga N, Fox A M, Skolnick M S, Wilson L R 2015 Appl. Phys. Lett. 106 221101

    [30]

    Hennessy K, Badolato A, Winger M, Gerace D, Atatre M, Gulde S, Flt S, Hu E L, Imamoğlu A 2007 Nature 445 896

    [31]

    Imamoğlu A, Awschalom D D, Burkard G, Divincenzo D P, Loss D, Sherwin M, Small A 1999 Phys. Rev. Lett. 83 4204

    [32]

    Reithmaier J P, Sek G, Lffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197

    [33]

    Thon S M, Rakher M T, Kim H, Gudat J, Irvine W T M, Petroff P M, Bouwmeester D 2009 Appl. Phys. Lett. 94 111115

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Chow E, Lin S Y, Johnson S G, Villeneuve P R, Joannopoulos J D, Wendt J R, Vawter G A, Zubrzycki W, Hou H, Alleman A 2000 Nature 407 983

    [4]

    Johnson S G, Fan S H, Villeneuve P R, Joannopoulos J D, Kolodziejski L A 1999 Phys. Rev. B 60 5751

    [5]

    Akahane Y, Asano T, Song B S, Noda S 2003 Nature 425 944

    [6]

    Chalcraft A R A, Lam S, OBrien D, Krauss T F, Sahin M, Szymanski D, Sanvitto D, Oulton R, Skolnick M S, Fox A M, Whittaker D M, Liu H Y, Hopkins M 2007 Appl. Phys. Lett. 90 241117

    [7]

    Takagi H, Ota Y, Kumagai N, Ishida S, Iwamoto S, Arakawa Y 2012 Opt. Express 20 28292

    [8]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200

    [9]

    Brossard F S F, Xu X L, Williams D A, Hadjipanayi M, Hugues M, Hopkinson M, Wang X, Taylor R A 2010 Appl. Phys. Lett. 97 111101

    [10]

    Badolato A, Winger M, Hennessy K J, Hu E L, Imamoğlu A 2008 C. R. Phys. 9 850

    [11]

    Tang J, Geng W D, Xu X L 2015 Sci. Rep. 5 09252

    [12]

    Cao S, Xu X L 2014 Phyisics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]

    [13]

    Mekis A, Chen J C, Kurland I, Fan S H, Villeneuve P R, Joannopoulos J D 1996 Phys. Rev. Lett. 77 3787

    [14]

    Atlasov K A, Karlsson K F, Rudra A, Dwir B, Kapon E 2008 Opt. Express 16 16255

    [15]

    Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T, Noda S 2012 Nat. Photon. 6 56

    [16]

    Faraon A, Waks E, Englund D, Fushman I, Vučković J 2007 Appl. Phys. Lett. 90 073102

    [17]

    Brossard F S F, Reid B P L, Chan C C S, Xu X L, Griffiths J P, Williams D A, Murray R, Taylor R A 2013 Opt. Express 21 16934

    [18]

    Zhao Y H, Qian C J, Qiu K S, Gao Y N, Xu X L 2015 Opt. Express 23 9211

    [19]

    Gao Y H, Xu X S 2014 Chin. Phys. B 23 114205

    [20]

    Kunz K S, Luebbers R J 1993 The Finite Difference Time Domain Method for Electromagnetics (Florida: CRC Press) pp1-367

    [21]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [22]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [23]

    Stace T M, Milburn G J, Barnes C H W 2003 Phys. Rev. B 67 085317

    [24]

    Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A, Malpuech G 2008 Phys. Rev. Lett. 100 240404

    [25]

    Larqu M, Karle T, Robert-Philip I, Beveratos A 2009 New J. Phys. 11 033022

    [26]

    Luxmoore I J, Ahmadi E D, Fox A M, Hugues M, Skolnick M S 2011 Appl. Phys. Lett. 98 041101

    [27]

    Luxmoore I J, Ahmadi E D, Luxmoore B J, Wasley N A, Tartakovskii A I, Hugues M, Skolnick M S, Fox A M 2012 Appl. Phys. Lett. 100 121116

    [28]

    Coles R J, Prtljaga N, Royall B, Luxmoore I J, Fox A M, Skolnick M S 2014 Opt. Express 22 2376

    [29]

    Bentham C, Itskevich I E, Coles R J, Royall B, Clarke E, OHara J, Prtljaga N, Fox A M, Skolnick M S, Wilson L R 2015 Appl. Phys. Lett. 106 221101

    [30]

    Hennessy K, Badolato A, Winger M, Gerace D, Atatre M, Gulde S, Flt S, Hu E L, Imamoğlu A 2007 Nature 445 896

    [31]

    Imamoğlu A, Awschalom D D, Burkard G, Divincenzo D P, Loss D, Sherwin M, Small A 1999 Phys. Rev. Lett. 83 4204

    [32]

    Reithmaier J P, Sek G, Lffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197

    [33]

    Thon S M, Rakher M T, Kim H, Gudat J, Irvine W T M, Petroff P M, Bouwmeester D 2009 Appl. Phys. Lett. 94 111115

  • [1] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping. Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] Du An-Tian, Liu Ruo-Tao, Cao Chun-Fang, Han Shi-Xian, Wang Hai-Long, Gong Qian. Improving structure design of active region of InAs quantum dots by using InAs/GaAs digital alloy superlattice. Acta Physica Sinica, 2023, 72(12): 128101. doi: 10.7498/aps.72.20230270
    [3] Hu Yu-Dong, Song Li-Jun, Wang Chen-Xi, Zhang Pei, Zhou Jing, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Characterization of mode field distribution in optical Fabry-Perot cavity based on nanofiber. Acta Physica Sinica, 2022, 71(23): 234203. doi: 10.7498/aps.71.20221538
    [4] Pei Si-Hui, Song Zi-Xuan, Lin Xing, Fang Wei. Interaction between light and single quantum-emitter in open Fabry-Perot microcavity. Acta Physica Sinica, 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [5] Liang Yu-Hong, Li Hong-Juan, Yin Ji-Wen. Intraband relaxation process in PbSe quantum dot studied by lattice relaxation method. Acta Physica Sinica, 2019, 68(12): 127301. doi: 10.7498/aps.68.20190187
    [6] Li Wei, Fu Jing, Yang Yun-Yun, He Ji-Zhou. Quantum dot refrigerator driven by photon. Acta Physica Sinica, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [7] Zhang Qiang-Qiang,  Hu Jian-Yong,  Jing Ming-Yong,  Li Bin,  Qin Cheng-Bing,  Li Yao,  Xiao Lian-Tuan,  Jia Suo-Tang. Research on fluorescence lifetime dynamics of quantum dot by single photons modulation spectrum. Acta Physica Sinica, 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [8] Li Tian-Xin, Weng Qian-Chun, Lu Jian, Xia Hui, An Zheng-Hua, Chen Zhang-Hai, Chen Ping-Ping, Lu Wei. Single photon detection and circular polarized emission manipulated with individual quantum dot. Acta Physica Sinica, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [9] Wen Rui-Juan, Du Jin-Jin, Li Wen-Fang, Li Gang, Zhang Tian-Cai. Construction of a strongly coupled cavity quantum electrodynamics system with easy accessibility of single or multiple intra-cavity atoms. Acta Physica Sinica, 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [10] Lu Dao-Ming. Tripartite entanglement properties of coupled three atoms in cavity quantum electrodynamics. Acta Physica Sinica, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [11] Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin. The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells. Acta Physica Sinica, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [12] Zhou Yun-Qing, Kong Ling-Min, Wang Rui, Zhang Cun-Xi. Properties of pumping current under microwave field appliedto a quantum dot with over-dot tunneling. Acta Physica Sinica, 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [13] Chen Xiang, Mi Xian-Wu. Studys of characteristics for pump-induced emission and anharmonic cavity-QED in quantum dot-cavity systems. Acta Physica Sinica, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [14] Wang Zhan-Guo, Niu Jie-Bin, Jia Rui, Peng Yin-Sheng, Yang Xiao-Hong, Ye Xiao-Ling, Xu Bo, Liang Song. Fabrication and luminescence characterization of two-dimensional GaAs-based photonic crystal nanocavities. Acta Physica Sinica, 2010, 59(10): 7073-7077. doi: 10.7498/aps.59.7073
    [15] Zhou Wang-Min, Cai Cheng-Yu, Wang Chong-Yu, Yin Shu-Yuan. Finite element analysis on stress distribution in buried quantum dots. Acta Physica Sinica, 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [16] Wang Tian-Qi, Yu Zhong-Yuan, Liu Yu-Min, Lu Peng-Fei. Analysis of strain energy and relaxation degree in different-shaped quantum dots using finite element method. Acta Physica Sinica, 2009, 58(8): 5618-5623. doi: 10.7498/aps.58.5618
    [17] Peng Hong-Ling, Han Qin, Yang Xiao-Hong, Niu Zhi-Chuan. Modulation response analysis of 1.3 μm quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [18] Cheng Cheng, Zhang Hang. A semiconductor nanocrystal PbSe quantum dot fiber amplifier. Acta Physica Sinica, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [19] Liu Shi-Rong, Huang Wei-Qi, Qin Zhao-Jian. Germanium quantum dots formed by oxidation of SiGe alloys. Acta Physica Sinica, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [20] Zhou Hui-Jun, Cheng Mu-Tian, Liu Shao-Ding, Wang Qu-Quan, Zhan Ming-Sheng, Xue Qi-Kun. High polarization properties of single-photon emission from anisotropic InGaAs quantum dots. Acta Physica Sinica, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
Metrics
  • Abstract views:  7280
  • PDF Downloads:  368
  • Cited By: 0
Publishing process
  • Received Date:  31 January 2016
  • Accepted Date:  14 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回