搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子点操控的光子探测和圆偏振光子发射

李天信 翁钱春 鹿建 夏辉 安正华 陈张海 陈平平 陆卫

量子点操控的光子探测和圆偏振光子发射

李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫
PDF
导出引用
导出核心图
  • 半导体量子点是研究光子与电子态相互作用的优选固态体系,并在光子探测和发射两个方向上展现出独特的技术机遇.其中基于量子点的共振隧穿结构被认为在单光子探测方面综合性能最佳,但受到光子数识别、工作温度两个关键性能的制约.利用腔模激子态外场耦合效应,有望获得圆偏振态可控的高频单光子发射.本文介绍作者提出的量子点耦合共振隧穿(QD-cRTD)的光子探测机理,利用量子点量子阱复合电子态的隧穿放大,将QD-cRTD光子探测的工作温度由液氦提高至液氮条件,光电响应的增益达到107以上,并具备双光子识别能力;同时,由量子点能级的直接吸收,原型器件获得了近红外的光子响应.在量子点光子发射机理的研究方面,作者实现了量子点激子跃迁和微腔腔模共振耦合的磁场调控,在Purcell效应的作用下增强激子自旋态的自发辐射速率,从而增强量子点中左旋或右旋圆偏振光的发射强度,圆偏度达到90%以上,形成一种光子自旋可控发射的新途径.
      通信作者: 李天信, txli@mail.sitp.ac.cn
    • 基金项目: 国家自然科学基金(批准号:91321311,11574336)和上海市科委基础研究项目(批准号:18JC1420400)资助的课题.
    [1]

    Buckley S, Rivoire K, Vučković J 2012 Rep. Prog. Phys. 75 126503

    [2]

    Yuan Z L, Kardynal1 B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A, Pepper M 2002 Science 295 102

    [3]

    Douse A, Suffczyński J, Beveratos A, Krebs O, Lemaître A, Sagnes I, Senellart P 2010 Nature 466 217

    [4]

    Carter S G, Sweeney T M, Kim M 2013 Nature Photon. 7 329

    [5]

    Michler P, Kiraz1 A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282

    [6]

    Salter C L, Stevenson R M, Farrer I, Nicoll C A, Ritchie D A, Shields A J 2010 Nature 465 594

    [7]

    Miyazawa T, Nakaoka T, Usuki T, Arakawa Y, Takemoto K, Hirose S, Okumura S, Takatsu M, Yokoyama N 2008 Appl. Phys. Lett. 92 161104

    [8]

    Birowosuto M D, Sumikura H, Matsuo S, Taniyama H, van Veldhoven P J, Nötzel R, Notomi M 2012 Sci. Rep. 2 32

    [9]

    Bennetta A J, Unitta D C, Atkinsonb B P, Ritchieb D A, Shields A J 2005 Opt. Express 13 50

    [10]

    Michler P, Imamoglu A, Mason M D, Carson P J, Geoffrey F S, Steven K B 2000 Nature 406 968

    [11]

    Bimberg D, Stock E, Lochmann A, Schliwa A, Tofflinger J A, Kalagin A K 2009 IEEE Photon. J. 1 58

    [12]

    Toishi A, Englund D, Faraon A, Vučković J 2009 Opt. Express 17 14618

    [13]

    Kim H, Bose R, Thomas C, Solomon G S, Waks E 2013 Nature Photon. 7 373

    [14]

    Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen N, Sauvan C, Lalanne P E, Gérard J M 2010 Nature Photon. 4 174

    [15]

    Hadfield R H 2009 Nature Photon. 3 696

    [16]

    Komiyama S, Astafiev O, Antonov V, Hirai H 2000 Nature 403 405

    [17]

    Blakesley J C, See P, Shields A J, Kardynał B E, Atkinson P, Farrer I, Ritchie D A 2005 Phys. Rev. Lett. 94 067401

    [18]

    Weng Q C, An Z H, Xiong D Y, Zhu Z Q 2015 Chin. Phys. Lett. 32 108503

    [19]

    Weng Q H, An Z H, Zhang B, Chen P P, Chen X S, Zhu Z Q, Lu W 2015 Sci. Rep. 5 9389

    [20]

    Weng Q C, An Z H, Zhu Z Q, Song J D, Choi W J 2014 Appl. Phys. Lett. 104 051113

    [21]

    Weng Q C, An Z H, Xiong D Y, Zhang B, Chen P P, Li T X, Zhu Z Q, Lu W 2014 Appl. Phys. Lett. 105 031114

    [22]

    Ren Q J, Lu J, Tan H H, Wu S, Sun L X, Zhou W H, Xie W, Sun Z, Zhu Y Y, Jagadish C, Shen S C, Chen Z H 2012 Nano Lett. 12 3455

  • [1]

    Buckley S, Rivoire K, Vučković J 2012 Rep. Prog. Phys. 75 126503

    [2]

    Yuan Z L, Kardynal1 B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A, Pepper M 2002 Science 295 102

    [3]

    Douse A, Suffczyński J, Beveratos A, Krebs O, Lemaître A, Sagnes I, Senellart P 2010 Nature 466 217

    [4]

    Carter S G, Sweeney T M, Kim M 2013 Nature Photon. 7 329

    [5]

    Michler P, Kiraz1 A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282

    [6]

    Salter C L, Stevenson R M, Farrer I, Nicoll C A, Ritchie D A, Shields A J 2010 Nature 465 594

    [7]

    Miyazawa T, Nakaoka T, Usuki T, Arakawa Y, Takemoto K, Hirose S, Okumura S, Takatsu M, Yokoyama N 2008 Appl. Phys. Lett. 92 161104

    [8]

    Birowosuto M D, Sumikura H, Matsuo S, Taniyama H, van Veldhoven P J, Nötzel R, Notomi M 2012 Sci. Rep. 2 32

    [9]

    Bennetta A J, Unitta D C, Atkinsonb B P, Ritchieb D A, Shields A J 2005 Opt. Express 13 50

    [10]

    Michler P, Imamoglu A, Mason M D, Carson P J, Geoffrey F S, Steven K B 2000 Nature 406 968

    [11]

    Bimberg D, Stock E, Lochmann A, Schliwa A, Tofflinger J A, Kalagin A K 2009 IEEE Photon. J. 1 58

    [12]

    Toishi A, Englund D, Faraon A, Vučković J 2009 Opt. Express 17 14618

    [13]

    Kim H, Bose R, Thomas C, Solomon G S, Waks E 2013 Nature Photon. 7 373

    [14]

    Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen N, Sauvan C, Lalanne P E, Gérard J M 2010 Nature Photon. 4 174

    [15]

    Hadfield R H 2009 Nature Photon. 3 696

    [16]

    Komiyama S, Astafiev O, Antonov V, Hirai H 2000 Nature 403 405

    [17]

    Blakesley J C, See P, Shields A J, Kardynał B E, Atkinson P, Farrer I, Ritchie D A 2005 Phys. Rev. Lett. 94 067401

    [18]

    Weng Q C, An Z H, Xiong D Y, Zhu Z Q 2015 Chin. Phys. Lett. 32 108503

    [19]

    Weng Q H, An Z H, Zhang B, Chen P P, Chen X S, Zhu Z Q, Lu W 2015 Sci. Rep. 5 9389

    [20]

    Weng Q C, An Z H, Zhu Z Q, Song J D, Choi W J 2014 Appl. Phys. Lett. 104 051113

    [21]

    Weng Q C, An Z H, Xiong D Y, Zhang B, Chen P P, Li T X, Zhu Z Q, Lu W 2014 Appl. Phys. Lett. 105 031114

    [22]

    Ren Q J, Lu J, Tan H H, Wu S, Sun L X, Zhou W H, Xie W, Sun Z, Zhu Y Y, Jagadish C, Shen S C, Chen Z H 2012 Nano Lett. 12 3455

  • [1] 周慧君, 程木田, 刘绍鼎, 王取泉, 詹明生, 薛其坤. 各向异性量子点单光子发射的高偏振度特性. 物理学报, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
    [2] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩. 物理学报, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [3] 张志伟, 赵翠兰, 孙宝权. InAs/GaAs量子点1.3 μm单光子发射特性. 物理学报, 2018, 67(23): 237802. doi: 10.7498/aps.67.20181592
    [4] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [5] 程木田, 周慧君, 刘绍鼎, 王取泉, 李耀义, 薛其坤. 脉冲激发三能级体系半导体量子点的单光子发射效率. 物理学报, 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [6] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [7] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [8] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器. 物理学报, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [9] 张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂. 单光子调制频谱用于量子点荧光寿命动力学的研究. 物理学报, 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [10] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [11] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [12] 古丽姗, 王东升, 彭勇刚, 郑雨军. 单量子点在双脉冲激发下偏振光子发射的统计特性. 物理学报, 2011, 60(8): 084207. doi: 10.7498/aps.60.084207
    [13] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析. 物理学报, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [14] 张西忠, 张兆玉, 彭勇刚, 郑雨军. 单量子点在连续外场激发下发射光子性质的理论研究. 物理学报, 2010, 59(3): 1791-1796. doi: 10.7498/aps.59.1791
    [15] 叶小玲, 徐波, 王占国, 梁松, 彭银生, 杨晓红, 牛洁斌, 贾锐. 二维GaAs 基光子晶体微腔的制作与光谱特性分析. 物理学报, 2010, 59(10): 7073-7077. doi: 10.7498/aps.59.7073
    [16] 赵彦辉, 钱琛江, 唐静, 孙悦, 彭凯, 许秀来. 偶极子位置及偏振对激发光子晶体H1微腔的影响. 物理学报, 2016, 65(13): 134206. doi: 10.7498/aps.65.134206
    [17] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶. ZrS2量子点: 制备、结构及光学特性. 物理学报, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [18] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [19] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [20] 王子武, 肖景林. 抛物线性限制势量子点量子比特及其光学声子效应. 物理学报, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
  • 引用本文:
    Citation:
计量
  • 文章访问数:  248
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 修回日期:  2018-11-20
  • 刊出日期:  2018-11-20

量子点操控的光子探测和圆偏振光子发射

  • 1. 中国科学院上海技术物理研究所, 红外物理国家重点实验室, 上海 200083;
  • 2. 华东师范大学, 极化材料与器件教育部重点实验室, 上海 200241;
  • 3. 复旦大学, 表面物理国家重点实验室, 先进材料研究所, 上海 200433;
  • 4. 复旦大学, 微纳光子结构教育部重点实验室, 上海 200433
  • 通信作者: 李天信, txli@mail.sitp.ac.cn
    基金项目: 

    国家自然科学基金(批准号:91321311,11574336)和上海市科委基础研究项目(批准号:18JC1420400)资助的课题.

摘要: 半导体量子点是研究光子与电子态相互作用的优选固态体系,并在光子探测和发射两个方向上展现出独特的技术机遇.其中基于量子点的共振隧穿结构被认为在单光子探测方面综合性能最佳,但受到光子数识别、工作温度两个关键性能的制约.利用腔模激子态外场耦合效应,有望获得圆偏振态可控的高频单光子发射.本文介绍作者提出的量子点耦合共振隧穿(QD-cRTD)的光子探测机理,利用量子点量子阱复合电子态的隧穿放大,将QD-cRTD光子探测的工作温度由液氦提高至液氮条件,光电响应的增益达到107以上,并具备双光子识别能力;同时,由量子点能级的直接吸收,原型器件获得了近红外的光子响应.在量子点光子发射机理的研究方面,作者实现了量子点激子跃迁和微腔腔模共振耦合的磁场调控,在Purcell效应的作用下增强激子自旋态的自发辐射速率,从而增强量子点中左旋或右旋圆偏振光的发射强度,圆偏度达到90%以上,形成一种光子自旋可控发射的新途径.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回