Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Intercalation and its mechanism of high quality large area graphene on metal substrate

Guo Hui Lu Hong-Liang Huang Li Wang Xue-Yan Lin Xiao Wang Ye-Liang Du Shi-Xuan Gao Hong-Jun

Citation:

Intercalation and its mechanism of high quality large area graphene on metal substrate

Guo Hui, Lu Hong-Liang, Huang Li, Wang Xue-Yan, Lin Xiao, Wang Ye-Liang, Du Shi-Xuan, Gao Hong-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene, a two-dimensional material with honeycomb lattice, has attracted great attention from the communities of fundamental research and industry, due to novel phenomena such as quantum Hall effect at room temperature, Berry phase, and Klein tunneling, and excellent properties including extremely high carrier mobility, high Young's modulus, high thermal conductivity and high flexibility. Some key issues hinder graphene from being used in electronics, including how to integrate it with Si, since Si based technology is widely used in modern microelectronics, and how to place high-quality large area graphene on semiconducting or insulating substrates. A well-known method of generating large-area and high-quality graphene is to epitaxially grow it on a single crystal metal substrate. However, due to the strong interaction between graphene and metal substrate, the intrinsic electronic structure is greatly changed and the conducting substrate also prevents it from being directly used in electronics. Recently, we have developed a technique, which intercalates silicon between epitaxial graphene and metal substrate such as Ru (0001) and Ir (111). Experimental results from Raman, angle-resolved photoemission spectroscopy, and scanning tunneling spectroscopy confirm that the intercalation layer decouples the interaction between graphene and metal substrate, which results in the recovery of its intrinsic band structure. Furthermore, we can use this technique to intercalate thick Si beyond one layer and intercalate Si between graphene and metal film, which indicates the possibility of integrating both graphene and Si device and vast potential applications in industry by reducing its cost. Besides Si, many other metal elements including Hf, Pb, Pt, Pd, Ni, Co, Au, In, and Ce can also be intercalated between graphene and metal substrate, implying the universality of this technique. Considering the versatility of these elements, we can expect this intercalation technique to have wide applications in tuning graphene properties. We also investigate the intercalation mechanism in detail experimentally and theoretically, and find that the intercalation process is composed of four steps:creation of defects, migration of heteroatoms, self-repairing of graphene, and growth of intercalation layers. The intercalation of versatile elements with different structures by this technique provides a new route to the construction of graphene heterostructures, espectially van der Waals heterostructure such as graphene/silicene and graphene/hafnene, and also opens the way for placing graphene on insulating substrate for electronic applications if the intercalation layer can be oxidized by further oxygen intercalation.
      Corresponding author: Du Shi-Xuan, sxdu@iphy.ac.cn;hjgao@iphy.ac.cn ; Gao Hong-Jun, sxdu@iphy.ac.cn;hjgao@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Projects of China (Grant No. 2016YFA0202300), the National Basic Research Program of China (Grant No. 2013CBA01600), the National Natural Science Foundation of China (Grant Nos. 61390501, 61471337, 51325204, 61622116, 61504149, 11604373), the Chinese Academy of Sciences, and the President Funds of University of Chinese Academy of Sciences.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [8]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [9]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nat. Commun. 3 699

    [10]

    Yan Z, Peng Z W, Sun Z Z, Yao J, Zhu Y, Liu Z, Ajayan P M, Tour J M 2011 Acs Nano 5 8187

    [11]

    Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Gao X G, Sun Z C, Zhang C 2013 Cryst. Eng. Comm. 15 1840

    [12]

    Chen J Y, Guo Y L, Wen Y G, Huang L P, Xue Y Z, Geng D C, Wu B, Luo B R, Yu G, Liu Y Q 2013 Adv. Mater. 25 992

    [13]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286

    [14]

    Chen Y B, Sun J Y, Gao J F, Du F, Han Q, Nie Y F, Chen Z, Bachmatiuk A, Priydarshi M K, Ma D L, Song X J, Wu X S, Xiong C Y, Rummeli M H, Ding F, Zhang Y F, Liu Z F 2015 Adv. Mater. 27 7839

    [15]

    Tang S J, Wang H M, Wang H S, Sun Q J, Zhang X Y, Cong C X, Xie H, Liu X Y, Zhou X H, Huang F Q, Chen X S, Yu T, Ding F, Xie X M, Jiang M H 2015 Nat. Commun. 6 6499

    [16]

    Suk J W, Lee W H, Lee J, Chou H, Piner R D, Hao Y F, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462

    [17]

    Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S, Wallace R M 2011 Appl. Phys. Lett. 99 122108

    [18]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151

    [19]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [20]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [21]

    Meng L, Wu R T, Zhang L Z, Li L F, Du S X, Wang Y L, Gao H J 2012 J. Phys.: Condens. Matter 24 314214

    [22]

    N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033

    [23]

    Usachov D, Dobrotvorskii A M, Varykhalov A, Rader O, Gudat W, Shikin A M, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [24]

    Odahara G, Otani S, Oshima C, Suzuki M, Yasue T, Koshikawa T 2011 Surf. Sci. 605 1095

    [25]

    Preobrajenski A B, Ng M L, Vinogradov A S, Martensson N 2008 Phys. Rev. B 78 073401

    [26]

    Starodub E, Bostwick A, Moreschini L, Nie S, El Gabaly F, McCarty K F, Rotenberg E 2011 Phys. Rev. B 83 125428

    [27]

    Que Y D, Zhang Y, Wang Y L, Huang L, Xu W Y, Tao J, Wu L J, Zhu Y M, Kim K, Weinl M, Schreck M, Shen C M, Du S X, Liu Y Q, Gao H J 2015 Adv. Mater. Interfaces 2 1400543

    [28]

    Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L, Gao H J 2012 Appl. Phys. Lett. 100 083101

    [29]

    Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C, Gao H J 2012 Appl. Phys. Lett. 100 093101

    [30]

    Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 1161

    [31]

    Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408

    [32]

    Cinquanta E, Scalise E, Chiappe D, Grazianetti C, van den Broek B, Houssa M, Fanciulli M, Molle A 2013 J. Phys. Chem. C 117 16719

    [33]

    Sutter P, Hybertsen M S, Sadowski J T, Sutter E 2009 Nano Lett. 9 2654

    [34]

    Vanderveen J F, Himpsel F J, Eastman D E 1980 Phys. Rev. B 22 4226

    [35]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [36]

    Ferralis N, Maboudian R, Carraro C 2008 Phys. Rev. Lett. 101 156801

    [37]

    Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K 2008 Nat. Nanotechnol. 3 210

    [38]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [39]

    Li L, Wang Y, Meng L, Wu R, Gao H J 2013 Appl. Phys. Lett. 102 093106

    [40]

    Robertson J 2006 Rep. Prog. Phys. 69 327

    [41]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671

    [42]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337

    [43]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56

    [44]

    Jin L, Fu Q, Mu R T, Tan D L, Bao X H 2011 Phys. Chem. Chem. Phys. 13 16655

    [45]

    Fei X M, Zhang L Z, Xiao W D, Chen H, Que Y D, Liu L W, Yang K, Du S X, Gao H J 2015 J. Phys. Chem. C 119 9839

    [46]

    Schumacher S, Huttmann F, Petrović M, Witt C, Frster D F, Vo-van C, Coraux J, Martnez-Galera A J, Sessi V, Vergara I, Rckamp R, Grninger M, Schleheck N, Meyer zu Heringdorf F, Ohresser P, Kralj M, Wehling T O, Michely T 2014 Phys. Rev. B 90 235437

    [47]

    Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X, Gao H J 2011 Appl. Phys. Lett. 99 163107

    [48]

    Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [49]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175

    [50]

    Xia C, Watcharinyanon S, Zakharov A A, Yakimova R, Hultman L, Johansson L I, Virojanadara C 2012 Phys. Rev. B 85 045418

    [51]

    Cui Y, Gao J F, Jin L, Zhao J J, Tan D L, Fu Q, Bao X H 2012 Nano Res. 5 352

    [52]

    Li G, Zhou H T, Pan L D, Zhang Y, Huang L, Xu W Y, Du S X, Ouyang M, Ferrari A C, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [53]

    Cui Y, Fu Q, Bao X H 2010 Phys. Chem. Chem. Phys. 12 5053

    [54]

    Schumacher S, Forster D F, Rosner M, Wehling T O, Michely T 2013 Phys. Rev. Lett. 110 086111

    [55]

    dos Santos J M B L, Peres N M R, Castro A H 2007 Phys. Rev. Lett. 99 256802

    [56]

    Kim N, Kim K S, Jung N, Brus L, Kim P 2011 Nano Lett. 11 860

    [57]

    Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X, Gao H J 2014 Appl. Phys. Lett. 104 093110

    [58]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582

    [59]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530

    [60]

    Martoccia D, Willmott P R, Brugger T, Bjorck M, Gunther S, Schleputz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102

    [61]

    Peng X Y, Ahuja R 2010 Phys. Rev. B 82 045425

    [62]

    Zhang H, Fu Q, Cui Y, Tan D L, Bao X H 2009 J. Phys. Chem. C 113 8296

    [63]

    Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L, Wu K, Wang X, Dou S X 2016 Sci. Adv. 2 e1600067

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [8]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [9]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nat. Commun. 3 699

    [10]

    Yan Z, Peng Z W, Sun Z Z, Yao J, Zhu Y, Liu Z, Ajayan P M, Tour J M 2011 Acs Nano 5 8187

    [11]

    Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Gao X G, Sun Z C, Zhang C 2013 Cryst. Eng. Comm. 15 1840

    [12]

    Chen J Y, Guo Y L, Wen Y G, Huang L P, Xue Y Z, Geng D C, Wu B, Luo B R, Yu G, Liu Y Q 2013 Adv. Mater. 25 992

    [13]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286

    [14]

    Chen Y B, Sun J Y, Gao J F, Du F, Han Q, Nie Y F, Chen Z, Bachmatiuk A, Priydarshi M K, Ma D L, Song X J, Wu X S, Xiong C Y, Rummeli M H, Ding F, Zhang Y F, Liu Z F 2015 Adv. Mater. 27 7839

    [15]

    Tang S J, Wang H M, Wang H S, Sun Q J, Zhang X Y, Cong C X, Xie H, Liu X Y, Zhou X H, Huang F Q, Chen X S, Yu T, Ding F, Xie X M, Jiang M H 2015 Nat. Commun. 6 6499

    [16]

    Suk J W, Lee W H, Lee J, Chou H, Piner R D, Hao Y F, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462

    [17]

    Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C W, McDonnell S, Colombo L, Vogel E M, Ruoff R S, Wallace R M 2011 Appl. Phys. Lett. 99 122108

    [18]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. 16 3151

    [19]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [20]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [21]

    Meng L, Wu R T, Zhang L Z, Li L F, Du S X, Wang Y L, Gao H J 2012 J. Phys.: Condens. Matter 24 314214

    [22]

    N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033

    [23]

    Usachov D, Dobrotvorskii A M, Varykhalov A, Rader O, Gudat W, Shikin A M, Adamchuk V K 2008 Phys. Rev. B 78 085403

    [24]

    Odahara G, Otani S, Oshima C, Suzuki M, Yasue T, Koshikawa T 2011 Surf. Sci. 605 1095

    [25]

    Preobrajenski A B, Ng M L, Vinogradov A S, Martensson N 2008 Phys. Rev. B 78 073401

    [26]

    Starodub E, Bostwick A, Moreschini L, Nie S, El Gabaly F, McCarty K F, Rotenberg E 2011 Phys. Rev. B 83 125428

    [27]

    Que Y D, Zhang Y, Wang Y L, Huang L, Xu W Y, Tao J, Wu L J, Zhu Y M, Kim K, Weinl M, Schreck M, Shen C M, Du S X, Liu Y Q, Gao H J 2015 Adv. Mater. Interfaces 2 1400543

    [28]

    Meng L, Wu R T, Zhou H T, Li G, Zhang Y, Li L F, Wang Y L, Gao H J 2012 Appl. Phys. Lett. 100 083101

    [29]

    Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C, Gao H J 2012 Appl. Phys. Lett. 100 093101

    [30]

    Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 1161

    [31]

    Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408

    [32]

    Cinquanta E, Scalise E, Chiappe D, Grazianetti C, van den Broek B, Houssa M, Fanciulli M, Molle A 2013 J. Phys. Chem. C 117 16719

    [33]

    Sutter P, Hybertsen M S, Sadowski J T, Sutter E 2009 Nano Lett. 9 2654

    [34]

    Vanderveen J F, Himpsel F J, Eastman D E 1980 Phys. Rev. B 22 4226

    [35]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [36]

    Ferralis N, Maboudian R, Carraro C 2008 Phys. Rev. Lett. 101 156801

    [37]

    Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K 2008 Nat. Nanotechnol. 3 210

    [38]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433

    [39]

    Li L, Wang Y, Meng L, Wu R, Gao H J 2013 Appl. Phys. Lett. 102 093106

    [40]

    Robertson J 2006 Rep. Prog. Phys. 69 327

    [41]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671

    [42]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337

    [43]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56

    [44]

    Jin L, Fu Q, Mu R T, Tan D L, Bao X H 2011 Phys. Chem. Chem. Phys. 13 16655

    [45]

    Fei X M, Zhang L Z, Xiao W D, Chen H, Que Y D, Liu L W, Yang K, Du S X, Gao H J 2015 J. Phys. Chem. C 119 9839

    [46]

    Schumacher S, Huttmann F, Petrović M, Witt C, Frster D F, Vo-van C, Coraux J, Martnez-Galera A J, Sessi V, Vergara I, Rckamp R, Grninger M, Schleheck N, Meyer zu Heringdorf F, Ohresser P, Kralj M, Wehling T O, Michely T 2014 Phys. Rev. B 90 235437

    [47]

    Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X, Gao H J 2011 Appl. Phys. Lett. 99 163107

    [48]

    Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [49]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175

    [50]

    Xia C, Watcharinyanon S, Zakharov A A, Yakimova R, Hultman L, Johansson L I, Virojanadara C 2012 Phys. Rev. B 85 045418

    [51]

    Cui Y, Gao J F, Jin L, Zhao J J, Tan D L, Fu Q, Bao X H 2012 Nano Res. 5 352

    [52]

    Li G, Zhou H T, Pan L D, Zhang Y, Huang L, Xu W Y, Du S X, Ouyang M, Ferrari A C, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [53]

    Cui Y, Fu Q, Bao X H 2010 Phys. Chem. Chem. Phys. 12 5053

    [54]

    Schumacher S, Forster D F, Rosner M, Wehling T O, Michely T 2013 Phys. Rev. Lett. 110 086111

    [55]

    dos Santos J M B L, Peres N M R, Castro A H 2007 Phys. Rev. Lett. 99 256802

    [56]

    Kim N, Kim K S, Jung N, Brus L, Kim P 2011 Nano Lett. 11 860

    [57]

    Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X, Gao H J 2014 Appl. Phys. Lett. 104 093110

    [58]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582

    [59]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530

    [60]

    Martoccia D, Willmott P R, Brugger T, Bjorck M, Gunther S, Schleputz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102

    [61]

    Peng X Y, Ahuja R 2010 Phys. Rev. B 82 045425

    [62]

    Zhang H, Fu Q, Cui Y, Tan D L, Bao X H 2009 J. Phys. Chem. C 113 8296

    [63]

    Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L, Wu K, Wang X, Dou S X 2016 Sci. Adv. 2 e1600067

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [3] Huang De-Rao, Song Jun-Jie, He Pi-Mo, Huang Kai-Kai, Zhang Han-Jie. Adsorption behavior of 9,9′-Dixanthylidene and moiré superstructure on Ru(0001). Acta Physica Sinica, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [4] De-Rao Huang,  Jun-Jie Song,  Pi-Mo He,  Kai-Kai Huang,  Han-Jie Zhang. Adsorption Behavior of 9,9'-Dixanthylidene and Moiré Superstructure on Ru(0001). Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [5] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [6] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] You Si-Fan,  Sun Lu-Ye,  Guo Jing,  Qiu Xiao-Hui,  Jiang Ying. Recent advances in probing surface/interfacial water by scanning probe microscopy. Acta Physica Sinica, 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [8] Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai. Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Acta Physica Sinica, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [9] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [10] Wu Pei, Hu Xiao, Zhang Jian, Sun Lian-Feng. Research status and development graphene devices using silicon as the subtrate. Acta Physica Sinica, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [11] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [12] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [13] Huang Xiang-Qian, Lin Chen-Fang, Yin Xiu-Li, Zhao Ru-Guang, Wang En-Ge, Hu Zong-Hai. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Physica Sinica, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [14] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [15] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [16] Wang Qi, Zhao Hua-Bo, Zhang Zhao-Hui. Conductance enhancement phenomenon of graphene ribbons on highly oriented pyrolytic graphite surfaces studied by scanning probe microscopy. Acta Physica Sinica, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [17] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] Zhang Yong-Peng, Yan Long, Xie Si-Shen, Pang Shi-Jin, Gao Hong-Jun. . Acta Physica Sinica, 2002, 51(2): 296-299. doi: 10.7498/aps.51.296
    [20] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
Metrics
  • Abstract views:  8637
  • PDF Downloads:  399
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2017
  • Accepted Date:  31 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回