Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface-enhanced Raman scattering effects of gold nanorods prepared by polycarbonate membranes

Ye Tong Gao Yun Yin Yan

Surface-enhanced Raman scattering effects of gold nanorods prepared by polycarbonate membranes

Ye Tong, Gao Yun, Yin Yan
PDF
Get Citation
  • Using a polycarbonate membrane (PCM) as a template, and combining with the electrochemical deposition method, we prepare gold nanorods each with about 36 nm in diameter and 1 μrm in length. We measure transmission spectra, and find that the resonant absorption peak is at around 540 nm. Subsequently, the enhancement effects of the nanorods are investigated with 514 nm and 633 nm laser excitations. Comparing the spectra under resonant condition with those under non-resonant condition, we conclude that the field enhancement effect under the resonant excitation is more prominent than under the non-resonant excitation. The enhancement factor under the resonant excitation is increased to 7 times of the factor under the non-resonant excitation. Comparing with similar researches, we achieve the following two improvements: 1) with a resonant excitation, we significantly increase the enhancement factor of gold nanorods; 2) we eliminate the fluorescence of PCM molecules, thus make the template method more feasible for transparent surface-enhanced Raman scattering substrate applications.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11004231), the Startup Fund from Institute of Physics, Chinese Academy of Sciences, and the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
    [1]

    Wu G Z, Ma S G 1998 Chin. Phys. Lett. 15 753

    [2]

    Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Ünl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404

    [3]

    Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Prober D E, Goldberg B B 2011 Phys. Rev. B 84 075428

    [4]

    Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Stolyarov A, Tinkham M, Bacsa W, Ünl M S, Goldberg B B, Swan A K 2006 IEEE J. Sel. Top. Quant. Electron. 12 1083

    [5]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163

    [6]

    Jeanmaire D L, van Duyne R P 1977 J. Electroanal. Chem. 84 1

    [7]

    Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215

    [8]

    Blackie E J, Le Ru E C, Etchegoin P G 2009 J. Am. Chem. Soc. 131 14466

    [9]

    Le Ru E C, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [10]

    Kambhampati P, Child C M, Foster M C, Campion A 1998 J. Chem. Phys. 108 5013

    [11]

    Stiles P L, Dieringer J A, Shah N C, van Duyne R R 2008 Annu. Rev. Anal. Chem. 1 601

    [12]

    Campion A, Ivanecky III J E, Child C M, Foster M 1995 J. Am. Chem. Soc. 117 11807

    [13]

    Brolo A G, Arctander E, Gordon R, Leathem B, Kavanagh K L 2004 Nano Lett. 4 2015

    [14]

    Le Ru E C, Etchegoin P G, Grand J, Fe'lidj N, Aubard J, Le'vi G, Hohenau A, Krenn J R 2008 Curr. Appl. Phys. 8 467

    [15]

    Saute B, Premasiri R, Ziegler L, Narayanan R 2012 Analyst 137 5082

    [16]

    Zhang Q, Moran C H, Xia X H, Rycenga M, Li N X, Xia Y N 2012 Langmuir 28 9047

    [17]

    Zhang K, Liu J B, Hu X N, Xiang Y J, Feng L L, He W W, Hou S, Guo Y T, Ji Y L, Zhou W Y, Xie S S, Wu X C 2011 Physics 40 9 (in Chinese) [张 珂, 刘建波, 胡晓娜, 向彦娟, 冯莉莉, 何伟伟, 侯帅, 郭玉婷, 纪英露, 周维亚, 解思深, 吴晓春 2011物理 40 9]

    [18]

    Willets K A, Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267

    [19]

    Kuncicky D M, Prevo B G, Velev O D 2006 J. Mater. Chem. 16 1207

    [20]

    Huang Z L, Meng G W, Huang Q, Chen B, Zhu C H, Zhang Z 2012 J. Raman Spectrosc. DOI 10.1002/jrs.4184

    [21]

    Alexander K D, Skinner K, Zhang S P, Wei H, Lopez R 2010 Nano Lett. 10 4488

    [22]

    Fukami K, Chourou M L, Miyagawa R, Noval Á M, Sakka T, Miguel M S, Raúl J M P, Ogata Y H 2011 Materials 4 791

    [23]

    Pereira F C, Bergamo E P, Zanoni M V B, Moretto L M, Ugo P 2006 Quim. Nova. 29 1054

    [24]

    Azariana A, Zada A I, Dolati A, Mahdavia S M 2009 Thin Solid Films 517 1736

    [25]

    Dangwal A, Pandey C S, Mller G, Karim S, Cornelius T W, Trautmann C 2008 Appl. Phys. Lett. 92 063115

    [26]

    Batista E A, Santos D P D, Andrade G F S, Sant'Ana A C, Brolo A G, Temperini M L A 2009 J. Nanosci. Nanotechnol. 9 3233

    [27]

    Gamby J, Rudolf A, Abid M, Girault H H, Tribollet C D B 2009 Lab. Chip. 9 1806

    [28]

    Apel P 2001 Radiat. Meas. 34 559

    [29]

    Schönenberger C, van der Zande B M I, Fokkink L G J, Henny M, Schmid C, Krger M, Bachtold A, Huber R, Birk H, Staufer U 1997 J. Phys. Chem. B 101 5497

    [30]

    Chlebny I, Doudin B, Ansermet J Ph 1993 Nanostruct. Mater. 2 637

    [31]

    Zhao Y, Jiang Y J, Fang Y 2006 Chem. Phys. 323 169

    [32]

    Khurana P, Thatai S, Wang P J, Lihitkar P, Zhang L S, Fang Y, Kulkarni S K 2012 Plasmonics DOI 10.1007/s11468-012-9374-0

    [33]

    Wang P J, Fang Y 2008 J. Chem. Phys. 129 134702

    [34]

    Tiwari N, Liu M Y, Kulkarni S K, Fang Y 2011 J. Nanophoton. 5 053513

  • [1]

    Wu G Z, Ma S G 1998 Chin. Phys. Lett. 15 753

    [2]

    Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Ünl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404

    [3]

    Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Prober D E, Goldberg B B 2011 Phys. Rev. B 84 075428

    [4]

    Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Stolyarov A, Tinkham M, Bacsa W, Ünl M S, Goldberg B B, Swan A K 2006 IEEE J. Sel. Top. Quant. Electron. 12 1083

    [5]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163

    [6]

    Jeanmaire D L, van Duyne R P 1977 J. Electroanal. Chem. 84 1

    [7]

    Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215

    [8]

    Blackie E J, Le Ru E C, Etchegoin P G 2009 J. Am. Chem. Soc. 131 14466

    [9]

    Le Ru E C, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [10]

    Kambhampati P, Child C M, Foster M C, Campion A 1998 J. Chem. Phys. 108 5013

    [11]

    Stiles P L, Dieringer J A, Shah N C, van Duyne R R 2008 Annu. Rev. Anal. Chem. 1 601

    [12]

    Campion A, Ivanecky III J E, Child C M, Foster M 1995 J. Am. Chem. Soc. 117 11807

    [13]

    Brolo A G, Arctander E, Gordon R, Leathem B, Kavanagh K L 2004 Nano Lett. 4 2015

    [14]

    Le Ru E C, Etchegoin P G, Grand J, Fe'lidj N, Aubard J, Le'vi G, Hohenau A, Krenn J R 2008 Curr. Appl. Phys. 8 467

    [15]

    Saute B, Premasiri R, Ziegler L, Narayanan R 2012 Analyst 137 5082

    [16]

    Zhang Q, Moran C H, Xia X H, Rycenga M, Li N X, Xia Y N 2012 Langmuir 28 9047

    [17]

    Zhang K, Liu J B, Hu X N, Xiang Y J, Feng L L, He W W, Hou S, Guo Y T, Ji Y L, Zhou W Y, Xie S S, Wu X C 2011 Physics 40 9 (in Chinese) [张 珂, 刘建波, 胡晓娜, 向彦娟, 冯莉莉, 何伟伟, 侯帅, 郭玉婷, 纪英露, 周维亚, 解思深, 吴晓春 2011物理 40 9]

    [18]

    Willets K A, Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267

    [19]

    Kuncicky D M, Prevo B G, Velev O D 2006 J. Mater. Chem. 16 1207

    [20]

    Huang Z L, Meng G W, Huang Q, Chen B, Zhu C H, Zhang Z 2012 J. Raman Spectrosc. DOI 10.1002/jrs.4184

    [21]

    Alexander K D, Skinner K, Zhang S P, Wei H, Lopez R 2010 Nano Lett. 10 4488

    [22]

    Fukami K, Chourou M L, Miyagawa R, Noval Á M, Sakka T, Miguel M S, Raúl J M P, Ogata Y H 2011 Materials 4 791

    [23]

    Pereira F C, Bergamo E P, Zanoni M V B, Moretto L M, Ugo P 2006 Quim. Nova. 29 1054

    [24]

    Azariana A, Zada A I, Dolati A, Mahdavia S M 2009 Thin Solid Films 517 1736

    [25]

    Dangwal A, Pandey C S, Mller G, Karim S, Cornelius T W, Trautmann C 2008 Appl. Phys. Lett. 92 063115

    [26]

    Batista E A, Santos D P D, Andrade G F S, Sant'Ana A C, Brolo A G, Temperini M L A 2009 J. Nanosci. Nanotechnol. 9 3233

    [27]

    Gamby J, Rudolf A, Abid M, Girault H H, Tribollet C D B 2009 Lab. Chip. 9 1806

    [28]

    Apel P 2001 Radiat. Meas. 34 559

    [29]

    Schönenberger C, van der Zande B M I, Fokkink L G J, Henny M, Schmid C, Krger M, Bachtold A, Huber R, Birk H, Staufer U 1997 J. Phys. Chem. B 101 5497

    [30]

    Chlebny I, Doudin B, Ansermet J Ph 1993 Nanostruct. Mater. 2 637

    [31]

    Zhao Y, Jiang Y J, Fang Y 2006 Chem. Phys. 323 169

    [32]

    Khurana P, Thatai S, Wang P J, Lihitkar P, Zhang L S, Fang Y, Kulkarni S K 2012 Plasmonics DOI 10.1007/s11468-012-9374-0

    [33]

    Wang P J, Fang Y 2008 J. Chem. Phys. 129 134702

    [34]

    Tiwari N, Liu M Y, Kulkarni S K, Fang Y 2011 J. Nanophoton. 5 053513

  • [1] Huang Qian, Zhang Xiao-Dan, Ji Wei-Wei, Ni Jian, Li Lin-Na, Sun Jian, Geng Wei-Dong, Geng Xin-Hua, Xiong Shao-Zhen, Zhao Ying, Wang Jing. Absorption and surface enhanced Raman scattering spectra caused by combined Ag nanoparticles with Al2O3 dielectric layer. Acta Physica Sinica, 2010, 59(4): 2753-2759. doi: 10.7498/aps.59.2753
    [2] Yan Zhao, Zhao Wen-Jing, Wang Rong-Yao. Kinetic study of nanorods self-assembly process based on logistic function model. Acta Physica Sinica, 2016, 65(12): 126101. doi: 10.7498/aps.65.126101
    [3] Wang Xiang-Xian, Bai Xue-Lin, Pang Zhi-Yuan, Yang Hua, Qi Yun-Ping, Wen Xiao-Lei. Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film. Acta Physica Sinica, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [4] Sun You-Mei, Zhu Zhi-Yong, Wang Zhi-Guang, Liu Jie, Zhang Chong-Hong, Jin Yun-Fan. Application of the thermal spike model to amorphous latent tracks in polycarbona te. Acta Physica Sinica, 2005, 54(4): 1707-1710. doi: 10.7498/aps.54.1707
    [5] Bai Xiong-Fei, Niu Shu-Tong, Zhou Wang, Wang Guang-Yi, Pan Peng, Fang Xing, Chen Xi-Meng, Shao Jian-Xiong. Dynamic evolution of 20-keV H+ transmitted through polycarbonate nanocapillaries. Acta Physica Sinica, 2017, 66(9): 093401. doi: 10.7498/aps.66.093401
    [6] Zhou Wang, Niu Shu-Tong, Yan Xue-Wen, Bai Xiong-Fei, Han Cheng-Zhi, Zhang Mei-Xiao, Zhou Li-Hua, Yang Ai-Xiang, Pan Peng, Shao Jian-Xiong, Chen Xi-Meng. Dynamic evolution of 100-keV H+ through polycarbonate nanocapillaries. Acta Physica Sinica, 2016, 65(10): 103401. doi: 10.7498/aps.65.103401
    [7] Niu Shu-Tong, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Jin Yi-Lei, Yu Lou-Fei, Han Cheng-Zhi, Shao Jian-Xiong, Chen Xi-Meng. Experimental and theoritical research on the dynamical transmission of 30 keV H+ ions through polycarbonate nanocapillaries. Acta Physica Sinica, 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [8] Niu Shu-Tong, Zhou Wang, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Shao Jian-Xiong, Chen Xi-Meng. Transmission of 30-keV He2+ ions through polycarbonate nanocapillaries: Dependence on the incident angle. Acta Physica Sinica, 2018, 67(17): 176102. doi: 10.7498/aps.67.20172484
    [9] YE XIAO-LAN, DENG WEN-JIE, LIANG ER-JUN. NEAR INFRARED SURFACE ENHANCED RAMAN-SCATTERING OF HALATE IONS. Acta Physica Sinica, 1997, 46(11): 2130-2137. doi: 10.7498/aps.46.2130
    [10] Zhang Ran, Xiao Xin-Ze, Lü Chao, Luo Yang, Xu Ying. Assembling of gold nanorods by femtosecond laser fabrication. Acta Physica Sinica, 2014, 63(1): 014206. doi: 10.7498/aps.63.014206
  • Citation:
Metrics
  • Abstract views:  1569
  • PDF Downloads:  984
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2013
  • Accepted Date:  27 February 2013
  • Published Online:  20 June 2013

Surface-enhanced Raman scattering effects of gold nanorods prepared by polycarbonate membranes

  • 1. Faculty Of Physics and Electronics, Hubei University, Wuhan 430086, China;
  • 2. Key Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China;
  • 3. Faculty of Materials Science and Engineering, Hubei University, Wuhan 430086, China
Fund Project:  Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11004231), the Startup Fund from Institute of Physics, Chinese Academy of Sciences, and the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.

Abstract: Using a polycarbonate membrane (PCM) as a template, and combining with the electrochemical deposition method, we prepare gold nanorods each with about 36 nm in diameter and 1 μrm in length. We measure transmission spectra, and find that the resonant absorption peak is at around 540 nm. Subsequently, the enhancement effects of the nanorods are investigated with 514 nm and 633 nm laser excitations. Comparing the spectra under resonant condition with those under non-resonant condition, we conclude that the field enhancement effect under the resonant excitation is more prominent than under the non-resonant excitation. The enhancement factor under the resonant excitation is increased to 7 times of the factor under the non-resonant excitation. Comparing with similar researches, we achieve the following two improvements: 1) with a resonant excitation, we significantly increase the enhancement factor of gold nanorods; 2) we eliminate the fluorescence of PCM molecules, thus make the template method more feasible for transparent surface-enhanced Raman scattering substrate applications.

Reference (34)

Catalog

    /

    返回文章
    返回