搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米棒复合体的消光特性

黄运欢 李璞

金纳米棒复合体的消光特性

黄运欢, 李璞
PDF
导出引用
  • 金属纳米颗粒局域表面等离激元共振时能够产生消光和近场增强效应已经成为国内外研究的热点. 应用时域有限差分法对L形纳米棒与普通纳米棒构成的金纳米棒复合体的消光光谱及其近场增强和电流矢量密度分布进行了研究. 计算结果表明, 普通纳米棒和L形纳米棒二聚体的光谱响应与纳米棒间的间距有关, 而金纳米棒复合体的消光光谱可通过调整L形纳米棒与普通纳米棒间的间距、L形纳米棒的臂长度以及普通纳米棒的长度进行调谐. 此外金纳米棒复合体可以分解成L形纳米棒二聚体和普通纳米棒二聚体两个部分, 通过分别改变L形纳米棒的臂长和普通纳米棒的长度, 对比L形纳米棒二聚体和普通纳米棒二聚体间的共振峰位置变化, 可以更直观地了解金纳米棒复合体消光光谱线型的变化. 这些结果可用于指导金纳米棒复合体纳米光子器件的设计, 以满足其在表面增强拉曼散射和生物传感等方面应用.
    • 基金项目: 国家自然科学基金(批准号: 61205142, 51404165)资助的课题.
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2002 J. Phys. Chem. B 34 668

    [3]

    Ding P, Wang J Q, He J N, Fan C Z, Cai G W, Liang E J 2013 Chin. Phys.B 22 127802

    [4]

    Liu S D, Cheng M T 2010 J. Appl. Phys. 108 034313

    [5]

    Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M, Gao H J 2011 Chin. Phys. B 20 076103

    [6]

    Shopa M, Kolwas K, Derkachova A, Derkachov G 2010 Opto-Electron. Rev. 18 421

    [7]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 Appl. Phys. Lett. 100 203119

    [8]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260

    [9]

    Liu S D, Zhang M J, Wang W J, Wang Y C 2013 Appl. Phys. Lett. 102 133105

    [10]

    Kessentini S, Barchiesi D, D'Andrea C, Toma A, Guillot N, Di Fabrizio E, Fazio B, Marago O M, Gucciardi P G, de la Chapelle M L 2014 J. Phys. Chem. C 118 3209

    [11]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [12]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [13]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 Opt. Express 19 15363

    [14]

    He M D, Ma W G, Wang X J 2013 Chin. Phys. B 22 114201

    [15]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H, Sun Z R 2014 Appl. Phys. Lett. 104 113104

    [16]

    Jiang W, Kim B Y S, Rutka J T, Chan W C W 2008 Nat Nanotechnol. 3 145

    [17]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707

    [18]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [19]

    Zhao H J 2012 Chin. Phys. B 21 087104

    [20]

    Yuan J, Kan Q, Geng Z X, Xie Y Y, Wang C X, Chen H D 2014 Chin. Phys. B 23 084201

    [21]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [22]

    Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M 2015 Chin. Phys. Lett. 32 018701

    [23]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 J. Phys. Chem. C 115 24469

    [24]

    Zhou Q, He Y, Abell J, Zhang Z, Zhao Y 2011 J. Phys. Chem. C 115 14131

    [25]

    Wang J Q, Fan C Z, He J N, Ding P, Liang E J, Xue Q Z 2013 Opt. Express 21 2236

    [26]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano 5 2042

    [27]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [28]

    Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y F, Hong M H, Maier S A 2012 Nano Lett. 12 2101

    [29]

    Wang M, Cao M, Guo Z R, Gu N 2013 J. Phys. Chem. C 117 11713

    [30]

    Canfield B K, Kujala S, Jefimovs K, Turunen J, Kauranen M 2004 Opt. Express 12 5418

    [31]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 Appl. Phys. Lett. 86 183109

    [32]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 J. Opt. A: Pure Appl. Opt. 7 110

    [33]

    Sung J, Hicks E M, van Duyne R P, Spears K G 2007 J. Phys. Chem. C 111 10368

    [34]

    Panaro S, Toma A, Zaccaria R P, Chirumamilla M, Saeed A, Razzari L, Das G, Liberale C, de Angelis F, Di Fabrizio E 2013 Microelectron. Eng. 111 91

    [35]

    Husu H, Makitalo J, Laukkanen J, Kuittinen M, Kauranen M 2010 Opt. Express 18 16601

    [36]

    Yang J, Zhang J S 2013 Opt. Express 21 7934

    [37]

    Yang J, Zhang J S 2011 Plasmonics 6 251

    [38]

    Liu J Q, Chen J, Wang D Y, Zhou Y X, Chen Z H, Wang L L 2013 Chin. Phys. Lett. 30 097801

    [39]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [40]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 31 3964

    [41]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2002 J. Phys. Chem. B 34 668

    [3]

    Ding P, Wang J Q, He J N, Fan C Z, Cai G W, Liang E J 2013 Chin. Phys.B 22 127802

    [4]

    Liu S D, Cheng M T 2010 J. Appl. Phys. 108 034313

    [5]

    Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M, Gao H J 2011 Chin. Phys. B 20 076103

    [6]

    Shopa M, Kolwas K, Derkachova A, Derkachov G 2010 Opto-Electron. Rev. 18 421

    [7]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 Appl. Phys. Lett. 100 203119

    [8]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260

    [9]

    Liu S D, Zhang M J, Wang W J, Wang Y C 2013 Appl. Phys. Lett. 102 133105

    [10]

    Kessentini S, Barchiesi D, D'Andrea C, Toma A, Guillot N, Di Fabrizio E, Fazio B, Marago O M, Gucciardi P G, de la Chapelle M L 2014 J. Phys. Chem. C 118 3209

    [11]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [12]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [13]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 Opt. Express 19 15363

    [14]

    He M D, Ma W G, Wang X J 2013 Chin. Phys. B 22 114201

    [15]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H, Sun Z R 2014 Appl. Phys. Lett. 104 113104

    [16]

    Jiang W, Kim B Y S, Rutka J T, Chan W C W 2008 Nat Nanotechnol. 3 145

    [17]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707

    [18]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [19]

    Zhao H J 2012 Chin. Phys. B 21 087104

    [20]

    Yuan J, Kan Q, Geng Z X, Xie Y Y, Wang C X, Chen H D 2014 Chin. Phys. B 23 084201

    [21]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [22]

    Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M 2015 Chin. Phys. Lett. 32 018701

    [23]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 J. Phys. Chem. C 115 24469

    [24]

    Zhou Q, He Y, Abell J, Zhang Z, Zhao Y 2011 J. Phys. Chem. C 115 14131

    [25]

    Wang J Q, Fan C Z, He J N, Ding P, Liang E J, Xue Q Z 2013 Opt. Express 21 2236

    [26]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano 5 2042

    [27]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [28]

    Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y F, Hong M H, Maier S A 2012 Nano Lett. 12 2101

    [29]

    Wang M, Cao M, Guo Z R, Gu N 2013 J. Phys. Chem. C 117 11713

    [30]

    Canfield B K, Kujala S, Jefimovs K, Turunen J, Kauranen M 2004 Opt. Express 12 5418

    [31]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 Appl. Phys. Lett. 86 183109

    [32]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 J. Opt. A: Pure Appl. Opt. 7 110

    [33]

    Sung J, Hicks E M, van Duyne R P, Spears K G 2007 J. Phys. Chem. C 111 10368

    [34]

    Panaro S, Toma A, Zaccaria R P, Chirumamilla M, Saeed A, Razzari L, Das G, Liberale C, de Angelis F, Di Fabrizio E 2013 Microelectron. Eng. 111 91

    [35]

    Husu H, Makitalo J, Laukkanen J, Kuittinen M, Kauranen M 2010 Opt. Express 18 16601

    [36]

    Yang J, Zhang J S 2013 Opt. Express 21 7934

    [37]

    Yang J, Zhang J S 2011 Plasmonics 6 251

    [38]

    Liu J Q, Chen J, Wang D Y, Zhou Y X, Chen Z H, Wang L L 2013 Chin. Phys. Lett. 30 097801

    [39]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [40]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 31 3964

    [41]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231

  • [1] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用. 物理学报, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [2] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [3] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [4] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [5] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [6] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [7] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [8] 蒋行, 周玉荣, 刘丰珍, 周玉琴. 后退火处理对铟锡氧化物表面等离激元共振特性的影响. 物理学报, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [9] 胡宝晶, 黄铭, 黎鹏, 杨成福. 基于纳米盘棒耦合的多频段等离激元诱导透明研究. 物理学报, 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [10] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [11] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究. 物理学报, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [12] 杨振岭, 刘玉强, 杨延强. 银纳米颗粒对四苯基卟啉Q带荧光寿命的延长. 物理学报, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [13] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [14] 于海童, 刘东, 杨震, 段远源. 用于热光伏系统的近场辐射光谱控制表面结构. 物理学报, 2018, 67(2): 024209. doi: 10.7498/aps.67.20171531
    [15] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究. 物理学报, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [16] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [17] 徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢. 五边形截面的Ag纳米线局域表面等离子体共振模式. 物理学报, 2015, 64(24): 245201. doi: 10.7498/aps.64.245201
    [18] 丁世敬, 葛德彪, 申宁. 复合介质等效电磁参数的数值研究. 物理学报, 2010, 59(2): 943-948. doi: 10.7498/aps.59.943
    [19] 闫长春, 薛国刚, 刘 诚, 陈 浩, 崔一平. 产生纳米级暗中空光束的方法研究. 物理学报, 2007, 56(1): 160-164. doi: 10.7498/aps.56.160
    [20] 蓝朝晖, 胡希伟, 刘明海. 大面积表面波等离子体源微波功率吸收的数值模拟研究. 物理学报, 2011, 60(2): 025205. doi: 10.7498/aps.60.025205
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1286
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-24
  • 修回日期:  2015-06-21
  • 刊出日期:  2015-10-05

金纳米棒复合体的消光特性

  • 1. 新型传感器与智能控制教育部重点实验室, 太原 030024;
  • 2. 太原理工大学物理与光电工程学院, 太原 030024
    基金项目: 

    国家自然科学基金(批准号: 61205142, 51404165)资助的课题.

摘要: 金属纳米颗粒局域表面等离激元共振时能够产生消光和近场增强效应已经成为国内外研究的热点. 应用时域有限差分法对L形纳米棒与普通纳米棒构成的金纳米棒复合体的消光光谱及其近场增强和电流矢量密度分布进行了研究. 计算结果表明, 普通纳米棒和L形纳米棒二聚体的光谱响应与纳米棒间的间距有关, 而金纳米棒复合体的消光光谱可通过调整L形纳米棒与普通纳米棒间的间距、L形纳米棒的臂长度以及普通纳米棒的长度进行调谐. 此外金纳米棒复合体可以分解成L形纳米棒二聚体和普通纳米棒二聚体两个部分, 通过分别改变L形纳米棒的臂长和普通纳米棒的长度, 对比L形纳米棒二聚体和普通纳米棒二聚体间的共振峰位置变化, 可以更直观地了解金纳米棒复合体消光光谱线型的变化. 这些结果可用于指导金纳米棒复合体纳米光子器件的设计, 以满足其在表面增强拉曼散射和生物传感等方面应用.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回