搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于紫磷增敏的即插即用式双通道光纤表面等离激元共振折射率计

井建迎 刘琨 吴张羿 刘玥萌 江俊峰 徐天华 晏伟铖 熊艺扬 战晓寒 肖璐 刘津畅 刘铁根

引用本文:
Citation:

基于紫磷增敏的即插即用式双通道光纤表面等离激元共振折射率计

井建迎, 刘琨, 吴张羿, 刘玥萌, 江俊峰, 徐天华, 晏伟铖, 熊艺扬, 战晓寒, 肖璐, 刘津畅, 刘铁根

Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer

Jing Jian-Ying, Liu Kun, Wu Zhang-Yi, Liu Yue-Meng, Jiang Jun-Feng, Xu Tian-Hua, Yan Wei-Cheng, Xiong Yi-Yang, Zhan Xiao-Han, Xiao Lu, Liu Jin-Chang, Liu Tie-Gen
PDF
HTML
导出引用
  • 光纤表面等离激元共振(surface plasmon resonance, SPR)传感技术可以直接感测传感器周围分子相互作用导致的传感器表面折射率变化, 具有体积小、成本低、免标记、灵敏度高, 易实现小型化、多参量、实时原位检测等优势. 本文基于新型二维纳米材料紫磷并结合完备的制备与表征工艺首先构建了两种探针式光纤SPR折射率计, 可实现对面/体结合折射率的高灵敏度、即插即用式检测. 在1.33—1.34低折射率范围内, 本文设计的光纤/紫磷/金层/样品层近场增强型SPR折射率计灵敏度和品质因数最高分别达到2335.64 nm/RIU和24.15 RIU–1, 分别是单金层SPR折射率计的1.31倍和1.25倍; 所设计的光纤/金层/紫磷/样品层近导波型SPR折射率计灵敏度和品质因数分别达到2802.06 nm/RIU和22.53 RIU–1, 是单金层SPR折射率计的1.57倍和1.16倍. 最后, 将近场增强型SPR和近导波型SPR集成到一个光纤探针中, 实现了双通道传感. 本文开发的探针式双通道光纤SPR折射率计为生化领域中多类型蛋白检测、重金属离子检测等提供了一种新思路.
    The fiber optic surface plasmon resonance (SPR) technologies can directly detect the change of the refractive index on the surface of the sensor, caused by the interaction of biochemical molecules. Fiber optic SPR technologies have advantages of small size, low cost, no labeling, high sensitivity, and are easy to realize the miniaturization, multi-parameter, real-time and in-situ detection. Two types of probe-type fiber optic SPR refractometers are constructed based on the novel two-dimensional nanomaterial, i.e., violet phosphorus (VP), the mature fabrication and characterization technologies. The fabrication processes of the fiber optic SPR refractometers are first introduced, and then the feasibility of the fabrication processes is verified via multiple characterization methods. In terms of the signal demodulation, the noise of the resonance spectrum is suppressed by the variational mode decomposition algorithm, and the resonance wavelength is interrogated and monitored in real time by the centroid method. The refractive index sensing performances of the near-field enhanced fiber optic SPR refractometers coated with different layers of VP are investigated. With the increase of the VP layer number, the resonance spectrum exhibits redshift and broadening and the sensitivity is enhanced. The refractive index sensing performance of the nearly guided wave fiber optic SPR refractometer is also investigated. In the low refractive index range of 1.33-1.34 corresponding to the refractive index of the low-concentration biological solution, the sensitivity and the figure of merit of the near-field enhanced fiber optic SPR refractometer with the sensing structure of fiber core/VP dielectric layer/Au layer/sample layer reach to 2335.64 nm/RIU and 24.15 RIU–1, respectively, which are 1.31 times and 1.25 times higher than the counterparts of the single Au layer fiber optic SPR refractometer, respectively. The sensitivity and the figure of merit of the nearly guided wave fiber optic SPR refractometer with the sensing structure of fiber core/Au layer/VP dielectric layer/sample layer can reach to 2802.06 nm/RIU and 22.53 RIU–1, respectively, which are 1.57 times and 1.16 times higher than the counterparts of the single Au layer fiber optic SPR refractometer. Finally, the near-field enhanced SPR and the nearly guided wave SPR are integrated into a single fiber probe to achieve the double-lane sensing. The fiber optic SPR refractometers developed in this study can realize the high-sensitivity, plug-and-play and double-lane detection of the combination of surface refractive index and volume refractive index. The probe-type refractometer also provides a new idea for detecting multi-type protein molecules and heavy metal ions in the biochemical field.
      通信作者: 刘琨, beiyangkl@tju.edu.cn
    • 基金项目: 国家自然科学基(批准号: 61922061, 61775161, 61735011)和天津市杰出青年科学基金(批准号: 19JCJQJC61400)资助的课题.
      Corresponding author: Liu Kun, beiyangkl@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61922061, 61775161, 61735011) and the Tianjin Science Fund for Distinguished Young Scholars, China (Grant No. 19JCJQJC61400).
    [1]

    Liu Z W, Wu J N, Cai C, Yang B, Qi Z M 2022 Nat. Commun. 13 6475Google Scholar

    [2]

    Ribeiro J A, Sales M G F, Pereira C M 2022 TrAC, Trends Anal. Chem. 157 116766Google Scholar

    [3]

    Tan J S, Chen Y Y, He J, Occhipinti L G, Wang Z H, Zhou X H 2023 J. Hazard. Mater. 455 131644Google Scholar

    [4]

    Cao S Q, Shao Y, Wang Y, Wu T S, Zhang L F, Huang Y J, Zhang F, Liao C R, He J, Wang Y P 2018 Opt. Express 26 3988Google Scholar

    [5]

    Jing J Y, Liu K, Jiang J F, Xu T H, Xiao L, Zhan X H, Liu T G 2023 Adv. Sci. 10 2207437Google Scholar

    [6]

    Dastmalchi B, Tassin P, Koschny T, Soukoulis C M 2016 Adv. Opt. Mater. 4 177Google Scholar

    [7]

    Mai Z G, Zhang J H, Chen Y Z, Wang J Q, Hong X M, Su Q N, Li X J 2019 Biosens. Bioelectron. 144 111621Google Scholar

    [8]

    Li X G, Gong P Q, Zhao Q M, Zhou X, Zhang Y A, Zhao Y 2022 Sens. Actuators, B 359 131596Google Scholar

    [9]

    Yasli A 2021 Plasmonics 16 1605Google Scholar

    [10]

    Shakya A K, Singh S 2022 Opt. Laser Technol. 153 108246Google Scholar

    [11]

    Liu R C, Yang W, Lu J J, Shafi M, Jiang M S, Jiang S Z 2023 Nanotechnology 34 095501Google Scholar

    [12]

    Hu S Q, Chen J Y, Liang J H, Luo J J, Shi W C, Yuan J M, Chen Y F, Chen L, Chen Z, Liu G S, Luo Y H 2022 ACS Appl. Mater. Interfaces 14 42412Google Scholar

    [13]

    Liu Z H, Zhang M, Zhang Y, Zhang Y X, Liu K Q, Zhang J Z, Yang J, Yuan L B 2019 Opt. Lett. 44 2907Google Scholar

    [14]

    Chiavaioli F, Gouveia C A J, Jorge P A S, Baldini F 2017 Biosensors-Basel 7 23Google Scholar

    [15]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Photonics Res. 10 126Google Scholar

    [16]

    Shalabney A, Abdulhalim I 2011 Laser Photonics Rev. 5 571Google Scholar

    [17]

    Zhang L H, Huang H Y, Zhang B, Gu M Y, Zhao D, Zhao X W, Li L R, Zhou J, Wu K, Cheng Y H, Zhang J Y 2020 Angew. Chem. Int. Ed. 59 1074Google Scholar

    [18]

    Cicirello G, Wang M J, Sam Q P, Hart J L, Williams N L, Yin H B, Cha J J, Wang J J 2023 J. Am. Chem. Soc. 145 8218Google Scholar

    [19]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [20]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Liu T G 2023 Opto-Electron. Adv. 6 220072Google Scholar

    [21]

    Rehman H U, Cord-Landwehr S, Shapaval V, Dzurendova S, Kohler A, Moerschbacher B M, Zimmermann B 2023 Carbohydr. Polym. 302 120428Google Scholar

    [22]

    Patil R S, Sancaktar E 2021 Polymer 233 124181Google Scholar

    [23]

    Zhao Y, Tong R J, Xia F, Peng Y 2019 Biosens. Bioelectron. 142 111505Google Scholar

    [24]

    Guo J F, Xie R H, Wang Y X, Xiao L Z, Fu J W, Jin G W, Luo S H 2023 IEEE Trans. Geosci. Remote Sens. 61 5902014Google Scholar

    [25]

    Zhan S Y, Wang X P, Liu Y L 2011 Meas. Sci. Technol. 22 025201Google Scholar

    [26]

    Wang Q, Cong X W, Zhao W M, Ren Z H, Du N N, Yan X, Zhu A S, Qiu F M, Chen B H, Zhang K K 2022 IEEE Trans. Instrum. Meas. 71 7005808Google Scholar

    [27]

    Li Y L, Sun Q, Zu S, Shi X, Liu Y Q, Hu X Y, Ueno K, Gong Q H, Misawa H 2020 Phys. Rev. Lett. 124 163901Google Scholar

    [28]

    Chen Y Z, Ge Y Q, Huang W C, Li Z J, Wu L M, Zhang H, Li X J 2020 ACS Appl. Nano Mater. 3 303Google Scholar

    [29]

    Zhou Y A, Yan X 2022 IEEE Photonics J. 14 7151607Google Scholar

    [30]

    Chopra A, Mohanta G C, Das B, Bhatnagar R, Pal, S S 2021 IEEE Sens. J. 21 12153Google Scholar

    [31]

    Zakaria R, Zainuddin N M, Fahri M A S A, Thirunavakkarasu P M, Patel S K, Harun S W 2021 Opt. Fiber Technol. 61 102449Google Scholar

    [32]

    Zakaria R, Zainuddin N A M, Raya S A, Alwi S A K, Anwar T, Sarlan A, Ahmed K, Amiri I S 2020 Micromachines-Basel 11 77Google Scholar

    [33]

    Zhang H, Chen Y F, Feng X J, Xiong X, Hu S Q, Jiang Z P, Dong J L, Zhu W G, Qiu W T, Guan H Y, Lu H H, Yu J H, Zhong Y C, Zhang J, He M, Luo Y H, Chen Z 2018 IEEE J. Sel. Top. Quantum Electron. 25 7101909Google Scholar

    [34]

    赵静, 王英, 王义平 2019 激光与光电子学进展 56 230601Google Scholar

    Zhao J, Wang Y, Wang Y P 2019 Laser Optoelectron. Progress 56 230601Google Scholar

    [35]

    Zainuddin N A M, Ariannejad M M, Arasu P T, Harun S W, Zakaria R 2019 Results Phys. 13 102255Google Scholar

    [36]

    Amiri I S, Alwi S A K, Raya S A, Zainuddin N A M, Rohizat N S, Rajan M S M, Zakaria R 2019 J. Opt. Commun. 44 53Google Scholar

    [37]

    Wang W J, Mai Z G, Chen Y Z, Wang J Q, Li L, Su Q N, Li X J, Hong X M 2017 Sci. Rep. 7 16904Google Scholar

    [38]

    Zhao J, Cao S Q, Liao C R, Wang Y, Wang G J, Xu X Z, Fu C L, Xu G W, Lian J R, Wang Y P 2016 Sens. Actuators, B 230 206Google Scholar

    [39]

    Shi S, Wang L B, Su R X, Liu B S, Huang R L, Qi W, He Z M 2015 Biosens. Bioelectron. 74 454Google Scholar

    [40]

    Cennamo N, Massarotti D, Conte L, Zeni L 2011 Sensors-Basel 11 11752Google Scholar

    [41]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Nanomaterials-Basel 11 2137Google Scholar

    [42]

    Qu J H, Leirs K, Maes W, Imbrechts M, Callewaert N, Lagrou K, Geukens N, Lammertyn J, Spasic D 2022 ACS Sens. 7 477Google Scholar

    [43]

    Zhang Y N, Zhang L B, Han B, Gao P, Wu Q L, Zhang A Z 2018 Sens. Actuators, B 272 331Google Scholar

  • 图 1  (a)近场增强型和(b)近导波型光纤SPR激发结构示意图

    Fig. 1.  Schematic diagram of the sensing structure of (a) the near-field enhanced fiber SPR and (b) the nearly guided wave fiber SPR.

    图 2  双通道光纤SPR (a)有限元分析模型和(b)有限元损耗光谱. 模型参数: 纤芯半径rcore = 4.1 μm, 包层半径rcladding = 62.5 μm, 抛磨剩余厚度Dr = 66.6 μm, 金膜厚度50 nm, 紫磷厚度10 nm

    Fig. 2.  (a) Finite element analysis model and (b) the loss spectrum of the double-lane fiber optic SPR. Model parameter: rcore = 4.1 μm, rcladding = 62.5 μm, Dr = 66.6 μm, the thickness of the Au layer and the VP layer is 50 nm and 10 nm, respectively.

    图 3  (a)光纤预处理流程示意图; (b)光纤端面研磨; (c)光纤端面金反射镜溅射

    Fig. 3.  (a) Schematic diagram of fiber preprocessing process; (b) the grinding of the end face of the optical fiber; (c) the sputtering of the gold mirror on the fiber end face.

    图 A1  光纤端面研磨各阶段扫描电子显微镜图

    Fig. A1.  Scanning electron microscopy of the end face of the optical fiber at each step.

    图 A2  (a)壳聚糖和(b)聚丙烯酸的傅里叶红外光谱图

    Fig. A2.  Fourier transform infrared spectroscopy of (a) the CTS and (b) the PAA.

    图 A3  壳聚糖(a)和聚丙烯酸(b)的Zeta电位

    Fig. A3.  Zeta potential of (a) the CTS and (b) the PAA.

    图 A4  紫磷的(a)拉曼光谱、(b)扫描电子显微镜能谱图和(c) X射线衍射光谱

    Fig. A4.  (a) Raman spectrum, (b) the SEM energy spectrum and (c) the X-ray diffraction spectrum of the VP.

    图 4  (a)近场增强型光纤SPR折射率计制备流程; (b)近场增强光纤SPR折射率计传感结构示意图; (c)紫磷层层自组装; (d)传感区域金层溅射

    Fig. 4.  (a) Fabrication process of the near-field enhanced fiber SPR refractometer; (b) schematic diagram of sensing structure of the near-field enhanced fiber SPR refractometer; (c) the self-assembly of the VP layer; (d) the sputtering of the Au layer on the sensing area.

    图 5  (a)近导波型光纤SPR折射率计制备流程; (b)近导波光纤SPR折射率计传感结构示意图; (c)传感区域金层溅射; (d)紫磷层层自组装

    Fig. 5.  (a) Fabrication process of the nearly guided wave fiber SPR refractometer; (b) schematic diagram of sensing structure of the nearly guided wave fiber SPR refractometer; (c) the sputtering of the Au layer on the sensing area; (d) the self-assembly of the VP layer.

    图 6  光纤SPR折射率计信号解调系统示意图

    Fig. 6.  Schematic diagram of the signal demodulation system for the fiber SPR refractometer.

    图 7  (a) 共振光谱信号噪声抑制; (b) 共振波长在线实时监测

    Fig. 7.  (a) Noise suppression for the resonance spectra; (b) the online real-time monitoring of the resonance wavelength.

    图 8  增覆(a) 1层、(b) 2层和(c) 3层紫磷电介质层的近场增强型光纤SPR折射率计共振光谱; (d)增覆不同紫磷电介质层的光纤SPR折射率计平均灵敏度, 插图为三种光纤SPR折射率计共振波长与折射率点二次拟合曲线

    Fig. 8.  Resonance spectra of the near-field enhanced fiber SPR refractometer with (a) one-layer, (b) two-layer and (c) three-layer VP dielectric layers; (d) average sensitivity of the above three types of fiber SPR refractometers. Inset: binomial fitting curves of resonance wavelengths and refractive index points of three types of fiber SPR refractometers.

    图 9  增覆2层紫磷电介质层的近导波型光纤SPR折射率计(a)共振光谱和(b)平均灵敏度, 插图: 近导波型光纤 SPR 折射率计共振波长与折射率点二次拟合曲线

    Fig. 9.  (a) Resonance spectra and (b) the average sensitivity of the nearly guided wave fiber SPR refractometer coated with two-layer VP dielectric layer. Inset: the binomial fitting curve of resonance wavelengths and refractive index points.

    图 10  (a)近场增强型和(b)近导波型光纤SPR折射率计重复性测试

    Fig. 10.  Repeatability of (a) the near-field enhanced fiber SPR refractometer and (b) the nearly guided wave fiber SPR refractometer

    图 11  双通道光纤SPR折射率计(a)示意图和(b)实物图

    Fig. 11.  (a) Schematic diagram and (b) realistic image of the double-lane optical fiber SPR refractometer.

    图 12  双通道光纤SPR折射率计(a)共振光谱与(b)平均灵敏度. 插图为双通道光纤SPR折射率计共振波长与折射率点二次拟合曲线

    Fig. 12.  (a) Resonance spectra and (b) the average sensitivity of the double-lane optical fiber SPR refractometer. Inset: the binomial fitting curve of resonance wavelengths and refractive index points.

    图 A5  (a)近场增强和(b)近导波型光纤SPR折射率计传感区截面扫描电子显微镜图(105倍)

    Fig. A5.  Scanning electron microscopy images of cross sections of sensing areas of (a) the near-field enhanced and (b) the nearly guided wave fiber refractometers.

    表 1  折射率传感特性对比

    Table 1.  Comparison of refractive index sensing characteristics.

    传感结构 灵敏度/(nm·RIU–1)
    半峰全宽/nm
    品质因数/(RIU–1)
    光纤/金/待测物 1787.93 92.43 19.34
    光纤/一层紫磷/金/待测物 1927.61 79.82 24.15
    光纤/两层紫磷/金/待测物 2140.53 93.22 22.96
    光纤/三层紫磷/金/待测物 2335.64 116.94 24.15
    光纤/金/两层紫磷/待测物 2802.06 124.39 22.53
    下载: 导出CSV

    表 2  本文光纤SPR折射率计光谱特性与已报道光纤SPR传感器光谱特性对比

    Table 2.  Comparison between the study in this work and reported works.

    传感结构 折射率
    测量范围
    灵敏度
    计算方法
    灵敏度/
    (nm·RIU–1)
    半峰全宽/
    nm
    品质因数
    (RIU–1)
    年份 参考
    文献
    多模-单模-多模光纤/金/
    Ti3C2Tx/待测物
    1.3343—1.3658 线性拟合 2180.2 2022 [28]
    侧抛单模光纤/金/Ti3C2Tx/待测物 1.32—1.34 线性拟合 3143 206 15.26 2022 [29]
    锥形多模光纤/铬/金/待测物 1.337—1.359 线性拟合 2266 2021 [30]
    侧抛单模光纤/氟化镁/银/待测物 1.33—1.34 波长差与折射率差的比值 2812.50 35.95 78.23 2021 [31]
    侧抛单模光纤/铜/待测物 1.3330—1.3573 波长差与折射率差的比值 425 2.5 2020 [32]
    侧抛多模光纤/氟化镁/银/待测物 1.333—1.360 线性拟合 1603 47.80 33.54 2019 [33]
    侧抛单模光纤/银/氧化石墨烯/待测物 1.32—1.34 波长差与折射率差的比值 2252.50 60.50 37.22 2019 [34]
    侧抛单模光纤/银/待测物 1.333—1.345 波长差与折射率差的比值 2166.67 25 2019 [35]
    侧抛单模光纤/银/氧化石墨烯/待测物 1.30—1.34 波长差与折射率差的比值 833.33 10 2019 [36]
    多模光纤/金/待测物 1.3345—1.3592 线性拟合 2659.64 2017 [37]
    侧抛单模光纤/银/待测物 1.320—1.340 多项式
    拟合
    1798.0 58.60 30.68 2016 [38]
    多模光纤/化学镀金/待测物 1.333—1.359 线性拟合 2054 108.2 19 2015 [39]
    多模光纤/光刻胶/金/待测物 1.332—1.352 波长差与折射率差的比值 2422 181 2011 [40]
    多模光纤/三层紫磷/金/待测物 1.3335—1.3435 二次拟合 2335.64 116.94 24.15 本文工作
    多模光纤/金/两层紫磷/待测物 1.3352—1.3472 二次拟合 2802.06 124.39 22.53
    下载: 导出CSV
  • [1]

    Liu Z W, Wu J N, Cai C, Yang B, Qi Z M 2022 Nat. Commun. 13 6475Google Scholar

    [2]

    Ribeiro J A, Sales M G F, Pereira C M 2022 TrAC, Trends Anal. Chem. 157 116766Google Scholar

    [3]

    Tan J S, Chen Y Y, He J, Occhipinti L G, Wang Z H, Zhou X H 2023 J. Hazard. Mater. 455 131644Google Scholar

    [4]

    Cao S Q, Shao Y, Wang Y, Wu T S, Zhang L F, Huang Y J, Zhang F, Liao C R, He J, Wang Y P 2018 Opt. Express 26 3988Google Scholar

    [5]

    Jing J Y, Liu K, Jiang J F, Xu T H, Xiao L, Zhan X H, Liu T G 2023 Adv. Sci. 10 2207437Google Scholar

    [6]

    Dastmalchi B, Tassin P, Koschny T, Soukoulis C M 2016 Adv. Opt. Mater. 4 177Google Scholar

    [7]

    Mai Z G, Zhang J H, Chen Y Z, Wang J Q, Hong X M, Su Q N, Li X J 2019 Biosens. Bioelectron. 144 111621Google Scholar

    [8]

    Li X G, Gong P Q, Zhao Q M, Zhou X, Zhang Y A, Zhao Y 2022 Sens. Actuators, B 359 131596Google Scholar

    [9]

    Yasli A 2021 Plasmonics 16 1605Google Scholar

    [10]

    Shakya A K, Singh S 2022 Opt. Laser Technol. 153 108246Google Scholar

    [11]

    Liu R C, Yang W, Lu J J, Shafi M, Jiang M S, Jiang S Z 2023 Nanotechnology 34 095501Google Scholar

    [12]

    Hu S Q, Chen J Y, Liang J H, Luo J J, Shi W C, Yuan J M, Chen Y F, Chen L, Chen Z, Liu G S, Luo Y H 2022 ACS Appl. Mater. Interfaces 14 42412Google Scholar

    [13]

    Liu Z H, Zhang M, Zhang Y, Zhang Y X, Liu K Q, Zhang J Z, Yang J, Yuan L B 2019 Opt. Lett. 44 2907Google Scholar

    [14]

    Chiavaioli F, Gouveia C A J, Jorge P A S, Baldini F 2017 Biosensors-Basel 7 23Google Scholar

    [15]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Photonics Res. 10 126Google Scholar

    [16]

    Shalabney A, Abdulhalim I 2011 Laser Photonics Rev. 5 571Google Scholar

    [17]

    Zhang L H, Huang H Y, Zhang B, Gu M Y, Zhao D, Zhao X W, Li L R, Zhou J, Wu K, Cheng Y H, Zhang J Y 2020 Angew. Chem. Int. Ed. 59 1074Google Scholar

    [18]

    Cicirello G, Wang M J, Sam Q P, Hart J L, Williams N L, Yin H B, Cha J J, Wang J J 2023 J. Am. Chem. Soc. 145 8218Google Scholar

    [19]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [20]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Liu T G 2023 Opto-Electron. Adv. 6 220072Google Scholar

    [21]

    Rehman H U, Cord-Landwehr S, Shapaval V, Dzurendova S, Kohler A, Moerschbacher B M, Zimmermann B 2023 Carbohydr. Polym. 302 120428Google Scholar

    [22]

    Patil R S, Sancaktar E 2021 Polymer 233 124181Google Scholar

    [23]

    Zhao Y, Tong R J, Xia F, Peng Y 2019 Biosens. Bioelectron. 142 111505Google Scholar

    [24]

    Guo J F, Xie R H, Wang Y X, Xiao L Z, Fu J W, Jin G W, Luo S H 2023 IEEE Trans. Geosci. Remote Sens. 61 5902014Google Scholar

    [25]

    Zhan S Y, Wang X P, Liu Y L 2011 Meas. Sci. Technol. 22 025201Google Scholar

    [26]

    Wang Q, Cong X W, Zhao W M, Ren Z H, Du N N, Yan X, Zhu A S, Qiu F M, Chen B H, Zhang K K 2022 IEEE Trans. Instrum. Meas. 71 7005808Google Scholar

    [27]

    Li Y L, Sun Q, Zu S, Shi X, Liu Y Q, Hu X Y, Ueno K, Gong Q H, Misawa H 2020 Phys. Rev. Lett. 124 163901Google Scholar

    [28]

    Chen Y Z, Ge Y Q, Huang W C, Li Z J, Wu L M, Zhang H, Li X J 2020 ACS Appl. Nano Mater. 3 303Google Scholar

    [29]

    Zhou Y A, Yan X 2022 IEEE Photonics J. 14 7151607Google Scholar

    [30]

    Chopra A, Mohanta G C, Das B, Bhatnagar R, Pal, S S 2021 IEEE Sens. J. 21 12153Google Scholar

    [31]

    Zakaria R, Zainuddin N M, Fahri M A S A, Thirunavakkarasu P M, Patel S K, Harun S W 2021 Opt. Fiber Technol. 61 102449Google Scholar

    [32]

    Zakaria R, Zainuddin N A M, Raya S A, Alwi S A K, Anwar T, Sarlan A, Ahmed K, Amiri I S 2020 Micromachines-Basel 11 77Google Scholar

    [33]

    Zhang H, Chen Y F, Feng X J, Xiong X, Hu S Q, Jiang Z P, Dong J L, Zhu W G, Qiu W T, Guan H Y, Lu H H, Yu J H, Zhong Y C, Zhang J, He M, Luo Y H, Chen Z 2018 IEEE J. Sel. Top. Quantum Electron. 25 7101909Google Scholar

    [34]

    赵静, 王英, 王义平 2019 激光与光电子学进展 56 230601Google Scholar

    Zhao J, Wang Y, Wang Y P 2019 Laser Optoelectron. Progress 56 230601Google Scholar

    [35]

    Zainuddin N A M, Ariannejad M M, Arasu P T, Harun S W, Zakaria R 2019 Results Phys. 13 102255Google Scholar

    [36]

    Amiri I S, Alwi S A K, Raya S A, Zainuddin N A M, Rohizat N S, Rajan M S M, Zakaria R 2019 J. Opt. Commun. 44 53Google Scholar

    [37]

    Wang W J, Mai Z G, Chen Y Z, Wang J Q, Li L, Su Q N, Li X J, Hong X M 2017 Sci. Rep. 7 16904Google Scholar

    [38]

    Zhao J, Cao S Q, Liao C R, Wang Y, Wang G J, Xu X Z, Fu C L, Xu G W, Lian J R, Wang Y P 2016 Sens. Actuators, B 230 206Google Scholar

    [39]

    Shi S, Wang L B, Su R X, Liu B S, Huang R L, Qi W, He Z M 2015 Biosens. Bioelectron. 74 454Google Scholar

    [40]

    Cennamo N, Massarotti D, Conte L, Zeni L 2011 Sensors-Basel 11 11752Google Scholar

    [41]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Nanomaterials-Basel 11 2137Google Scholar

    [42]

    Qu J H, Leirs K, Maes W, Imbrechts M, Callewaert N, Lagrou K, Geukens N, Lammertyn J, Spasic D 2022 ACS Sens. 7 477Google Scholar

    [43]

    Zhang Y N, Zhang L B, Han B, Gao P, Wu Q L, Zhang A Z 2018 Sens. Actuators, B 272 331Google Scholar

  • [1] 李凯, 孙捷, 杜在发, 钱峰松, 唐鹏昊, 梅宇, 徐晨, 严群, 柳鸣, 李龙飞, 郭伟玲. 带有垂直石墨烯的金属热电堆红外探测器. 物理学报, 2023, 72(3): 038101. doi: 10.7498/aps.72.20221564
    [2] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应. 物理学报, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [6] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [7] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用. 物理学报, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [8] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [9] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [10] 万婷, 罗朝明, 闵力, 陈敏, 肖磊. 基于合金介电常数的可控特性增强光子自旋霍尔效应. 物理学报, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [11] 蒋行, 周玉荣, 刘丰珍, 周玉琴. 后退火处理对铟锡氧化物表面等离激元共振特性的影响. 物理学报, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [12] 黄运欢, 李璞. 金纳米棒复合体的消光特性. 物理学报, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [13] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [14] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [15] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [16] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [17] 杨振岭, 刘玉强, 杨延强. 银纳米颗粒对四苯基卟啉Q带荧光寿命的延长. 物理学报, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [18] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [19] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [20] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
计量
  • 文章访问数:  1480
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-08
  • 修回日期:  2023-08-10
  • 上网日期:  2023-08-24
  • 刊出日期:  2023-11-05

/

返回文章
返回