Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic and magnetic properties of fluorinated graphene sheets with divacancy substitutional doping

Xu Lei Dai Zhen-Hong Sui Peng-Fei Wang Wei-Tian Sun Yu-Ming

Electronic and magnetic properties of fluorinated graphene sheets with divacancy substitutional doping

Xu Lei, Dai Zhen-Hong, Sui Peng-Fei, Wang Wei-Tian, Sun Yu-Ming
PDF
Get Citation
  • According to the first principles, we investigate the structure, electronic, and magnetic properties of fluorinated graphene doped with external X (Al, P, Ga, As, Si) atoms at double vacancies, and find that like double vacancy doping of graphene, this kind of the fluorinated graphene divacancy substitution is also an ideal choice for substitutional doping. The results show that the electronic property and magnetic property of the fluorinated graphene both have large changes: the fluorinated graphene doped with Al (Ga) atoms can cause the semiconductor-to-metal transitions and induce magnetic moments. The fluorinated graphene doped with P (As) atoms becomes spin-polarized semiconductor. The Si doped fluorinated graphene keeps the semiconductor properties unchanged and has no magnetic moments. Through the further discussion about the mechanism of magnetism the relation between the doping concentration and magnetic property is obtained, and the magnetic properties in different doping situations are found to be caused by the different orbital electrons of different atoms. The divacancy substitutional doping behaviors enrich not only the doping ways of fluorinated graphene materials, but also its distinctive electronic and magnetic characteristics, which make this doping structure have potential applications in future electronic devices.
    • Funds: Project supported by the Program for the New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-09-0867).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Kim J, Park H, Hannon J B, Bedell S W, Fogel K, Sadana D K, Dimitrakopoulos C 2013 Science 342 833

    [3]

    Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601(in Chinese)[刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 物理学报 62 063601]

    [4]

    Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801(in Chinese)[汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 物理学报 63 107801]

    [5]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [6]

    Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877

    [7]

    Boukhvalov D W 2010 Physica E 43 199

    [8]

    Sahin H, Topsakal M, Ciraci S 2011 Phys. Rev. B 83 115432

    [9]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001

    [10]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [11]

    Chen L L, Guo L W, Liu Y, Li Z L, Huang J, Lu W 2013 Chin. Phys. B 22 107901

    [12]

    Mei F, Zhang D W, Zhu S L 2013 Chin. Phys. B 22 116106

    [13]

    Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102(in Chinese)[徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 物理学报 63 107102]

    [14]

    Bangert U, Bleloch A, Gass M H, Seepujak A, van den Berg J 2010 Phys. Rev. B 81 245423

    [15]

    Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H 2009 Science 324 768

    [16]

    Ao Z M, Yang J, Li S, Jiang Q 2008 Chem. Phys. Lett. 461 276

    [17]

    Dai J, Yuan J 2010 Phys. Rev. B 81 165414

    [18]

    Denis P A 2010 Chem. Phys. Lett. 492 251

    [19]

    Gao T H 2014 Acta Phys. Sin. 63 046102(in Chinese)[高潭华 2014 物理学报 63 046102]

    [20]

    Tsetseris L, Wang B, Pantelides S T 2014 Phys. Rev. B 89 035411

    [21]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Kim J, Park H, Hannon J B, Bedell S W, Fogel K, Sadana D K, Dimitrakopoulos C 2013 Science 342 833

    [3]

    Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601(in Chinese)[刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 物理学报 62 063601]

    [4]

    Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801(in Chinese)[汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 物理学报 63 107801]

    [5]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610

    [6]

    Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877

    [7]

    Boukhvalov D W 2010 Physica E 43 199

    [8]

    Sahin H, Topsakal M, Ciraci S 2011 Phys. Rev. B 83 115432

    [9]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S 2010 Nano Lett. 10 3001

    [10]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [11]

    Chen L L, Guo L W, Liu Y, Li Z L, Huang J, Lu W 2013 Chin. Phys. B 22 107901

    [12]

    Mei F, Zhang D W, Zhu S L 2013 Chin. Phys. B 22 116106

    [13]

    Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102(in Chinese)[徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 物理学报 63 107102]

    [14]

    Bangert U, Bleloch A, Gass M H, Seepujak A, van den Berg J 2010 Phys. Rev. B 81 245423

    [15]

    Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H 2009 Science 324 768

    [16]

    Ao Z M, Yang J, Li S, Jiang Q 2008 Chem. Phys. Lett. 461 276

    [17]

    Dai J, Yuan J 2010 Phys. Rev. B 81 165414

    [18]

    Denis P A 2010 Chem. Phys. Lett. 492 251

    [19]

    Gao T H 2014 Acta Phys. Sin. 63 046102(in Chinese)[高潭华 2014 物理学报 63 046102]

    [20]

    Tsetseris L, Wang B, Pantelides S T 2014 Phys. Rev. B 89 035411

    [21]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [22]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [23]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

  • [1] Gao Tan-Hua. Magnetic and electronic properties of fluorographene sheet with foreign atom substitutions. Acta Physica Sinica, 2014, 63(4): 046102. doi: 10.7498/aps.63.046102
    [2] Chen Kun, Fan Guang-Han, Zhang Yong. First principles study of optical properties of wurtzite ZnO with Mn-doping. Acta Physica Sinica, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [3] Zhang Ji-Hua, Ding Jian-Wen, Lu Zhang-Hui. First-principles study of electrical structures and optical properties of Co:MgF2 crystal. Acta Physica Sinica, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [4] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [5] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [6] Zhang Mei-Ling, Chen Yu-Hong, Zhang Cai-Rong, Li Gong-Ping. Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO: First principles study. Acta Physica Sinica, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [7] Chen Qing-Ling, Dai Zhen-Hong, Liu Zhao-Qing, An Yu-Feng, Liu Yue-Lin. First-principles study on the structure stability and doping performance of double layer h-BN/Graphene. Acta Physica Sinica, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [8] Lu Zhan-Sheng, Li Yan, Cheng Ying-Jie, Li Shuo, Zhang Xi-Lin, Xu Guo-Liang, Yang Zong-Xian. First-principles study on the hydrogenation of the O2 on TiN4 embedded graphene. Acta Physica Sinica, 2015, 64(21): 216101. doi: 10.7498/aps.64.216101
    [9] Hou Bin-Peng, Gan Zuo-Liang, Lei Xue-Ling, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of reduction mechanism of oxygen molecule using nitrogen doped graphene as cathode material for lithium air batteries. Acta Physica Sinica, 2019, 68(12): 128801. doi: 10.7498/aps.68.20190181
    [10] Linghu Jia-Jun, Liang Gong-Ying. First-principles study on the luminescence property of In-doped ZnTe. Acta Physica Sinica, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
  • Citation:
Metrics
  • Abstract views:  575
  • PDF Downloads:  544
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2014
  • Accepted Date:  14 May 2014
  • Published Online:  20 September 2014

Electronic and magnetic properties of fluorinated graphene sheets with divacancy substitutional doping

  • 1. Institute of Opto-electronic Information Science and Technology, Yantai University, Yantai 264005, China
Fund Project:  Project supported by the Program for the New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-09-0867).

Abstract: According to the first principles, we investigate the structure, electronic, and magnetic properties of fluorinated graphene doped with external X (Al, P, Ga, As, Si) atoms at double vacancies, and find that like double vacancy doping of graphene, this kind of the fluorinated graphene divacancy substitution is also an ideal choice for substitutional doping. The results show that the electronic property and magnetic property of the fluorinated graphene both have large changes: the fluorinated graphene doped with Al (Ga) atoms can cause the semiconductor-to-metal transitions and induce magnetic moments. The fluorinated graphene doped with P (As) atoms becomes spin-polarized semiconductor. The Si doped fluorinated graphene keeps the semiconductor properties unchanged and has no magnetic moments. Through the further discussion about the mechanism of magnetism the relation between the doping concentration and magnetic property is obtained, and the magnetic properties in different doping situations are found to be caused by the different orbital electrons of different atoms. The divacancy substitutional doping behaviors enrich not only the doping ways of fluorinated graphene materials, but also its distinctive electronic and magnetic characteristics, which make this doping structure have potential applications in future electronic devices.

Reference (25)

Catalog

    /

    返回文章
    返回