Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Passively Q-switched mode-locked Tm, Ho:LLF laser with a WS2 saturable absorber

Ling Wei-Jun Xia Tao Dong Zhong Liu Qing Lu Fei-Ping Wang Yong-Gang

Passively Q-switched mode-locked Tm, Ho:LLF laser with a WS2 saturable absorber

Ling Wei-Jun, Xia Tao, Dong Zhong, Liu Qing, Lu Fei-Ping, Wang Yong-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using few-layer tungsten disulfide (WS2) doped polyvinyl alcohol as a saturable absorber for the initiation of the pulse generation, we experimentally demonstrate stable passively Q-switched mode-locked operations of Tm, Ho:LiLuF4 laser at 1895 nm for the first time. The laser is designed with an X-type four-mirror cavity and pumped by a Ti:sapphire laser operated at 785 nm, and its continuous operation is initiated when the absorbed pump power is 143 mW. When the absorbed pump power reaches 2.645 W, we obtain a maximum output power of 985 mW and a crystal slope efficiency of 39.8% by linear fitting. When the saturable absorber WS2 is inserted in the cavity, the threshold of the absorbed pump power is increased to 234 mW. With the increase of the pump power, Q-switch pulse sequence is first observed. When the absorbed pump power reaches 1.39 W, the stable operation of the Q-switched mode locked pulse is realized. A maximum average output power of 156 mW is achieved at an absorbed pump power of 2.6 W, which corresponds to a 25 kHz Q-switched repetition rate and a 300 μs-long pulse envelope. In this case, the modulation depth in Q-switching envelopes is close to 100%. After the passively Q-switched mode-locked is obtained stably, the mode-locked pulses inside the Q-switched pulse envelope have a repetition rate of 131.6 MHz, corresponding to a mode locked pulse energy of 1.19 nJ and a cavity length of 1.14 m. According to the definition of the rise time and considering the symmetric shape of the mode locked pulse, we can assume that the duration of the pulse is approximately 1.25 times more than the rise time of the pulse. Then the width of the mode locked pulse is estimated to be about 878 ps. These experimental results show that WS2 is a promising broadband saturable absorption material for generating a 2 μm-wavelength mid-infrared solid-state laser pulse. By increasing the pump power and reducing the loss of WS2 material, it is possible to realize a continuous mode locking operation which has a narrower pulse duration. The mode-locked mid-infrared pulses are very stable and have a lot of potential applications such as ultrafast molecule spectroscopy, mid-IR pulse generation, laser radar, atmospheric environment monitoring, etc.
      Corresponding author: Ling Wei-Jun, wjlingts@sina.com;dz0212@foxmail.com ; Dong Zhong, wjlingts@sina.com;dz0212@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61465012, 61564008, 61461046, 61665010).
    [1]

    Sorokin E, Sorokina I T, Mandon J, Guelachvili G, Picque N 2007 Opt. Express 15 16540

    [2]

    Scholle K, Lamrini S, Koopmann P, Fuhrberg P 2010 Frontiers in Guided Wave Optics and Optoelectronics 21 471

    [3]

    Koopmann P, Lamrini S, Scholle K, Fuhrberg P, Petermann K, Huber G 2011 Opt. Lett. 36 948

    [4]

    Feng T L 2015 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [冯天利 2015 博士学位论文 (济南: 山东大学)]

    [5]

    Gluth A, Wang Y, Petrov V, Paajaste J, Suomalainen S, Härkönen A 2015 Opt. Express 23 1361

    [6]

    Yang K J, Bromberger H, Heinecke D, Kölbl C, Schäfer H, Dekorsy T 2012 Opt. Express 20 18630

    [7]

    Ma J, Xie G Q, Gao W L, Yuan P, Qian L J, Yu H H 2012 Opt. Express 37 1376

    [8]

    Yao B Q, Wang W, Tian Y, Li G, Wang Y Z 2011 Laser Phys. 21 2020

    [9]

    Denisov I A, Skoptsov N A, Gaponenko M S, Malyarevich A M, Yumashev K V, Lipovskii A A 2009 Opt. Express 34 3403

    [10]

    Wan H, Cai W, Wang F, Jiang S, Xu S, Liu J 2016 Opt. Quantum Electron. 48 1

    [11]

    Wang K, Wang J, Fan J, Lotya M, O'Neill A, Fox D 2013 Acs Nano. 7 9260

    [12]

    Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y 2014 Adv. Mater. 26 3538

    [13]

    Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H 2015 Photon. Res. 3 A47

    [14]

    Zou X, Leng Y X, Li Y Y, Feng Y Y, Zhang P X, Hang Y, Wang J 2015 Chin. Opt. Express 13 081405

    [15]

    Wang X, Wang Y, Duan L, Li L, Sun H 2016 Opt. Commun. 367 234

    [16]

    Molinasánchez A, Wirtz L 2011 Phys. Rev. B 84 15

    [17]

    Chen B, Zhang X, Wu K, Wang H, Wang J, Chen J 2015 Opt. Express 23 26723

    [18]

    Li L, Jiang S, Wang Y, Wang X, Duan L, Mao D 2015 Opt. Express 23 28698

    [19]

    Khazaeinezhad R, Kassani S H, Jeong H, Park K J 2015 IEEE Photon. Technol. Lett. 27 1

    [20]

    Jung M, Lee J, Park J, Koo J, Jhon Y M, Ju H L 2015 Opt. Express 23 19996

    [21]

    Qiao L, Yang F G, Wu Y H, Ke Y G, Xia Z C 2014 Acta Phys. Sin. 63 214205 (in Chinese) [乔亮, 羊富贵, 武永华, 柯友刚, 夏忠朝 2014 物理学报 63 214205]

    [22]

    Peng H, Zhang K, Zhang L, Hang Y, Xu J, Tang Y 2010 Chin. Opt. Express 8 63

    [23]

    Zhang X, Yu L, Zhang S, Li L, Zhao J, Cui J 2013 Opt. Express 21 12629

    [24]

    Zhang Y H, Li N, Xu J C, Xi L 2004 China Journal of Chinese Materia Medica 29 101 (in Chinese) [张韵慧, 李宁, 许建辰, 肖莉2004 中国中药杂志29 101]

    [25]

    Zeng H, Liu G B, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608

    [26]

    Ling W J, Zheng J A, Jia Y L, Wei Z Y 2005 Acta Phys. Sin. 54 1619 (in Chinese) [令维军, 郑加安, 贾玉磊, 魏志义 2005 物理学报 54 1619]

    [27]

    Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D, Wang F Q 2013 Sci. Rep. 3 2718

    [28]

    Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H, Zhang H J 2015 Photon. Res. 3 A47

    [29]

    Liu X M, Cui Y D, Han D D, Yao X K, Sun Z P 2015 Sci. Rep. 5 9101

    [30]

    Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S 2010 Opt. Express 35 3027

  • [1]

    Sorokin E, Sorokina I T, Mandon J, Guelachvili G, Picque N 2007 Opt. Express 15 16540

    [2]

    Scholle K, Lamrini S, Koopmann P, Fuhrberg P 2010 Frontiers in Guided Wave Optics and Optoelectronics 21 471

    [3]

    Koopmann P, Lamrini S, Scholle K, Fuhrberg P, Petermann K, Huber G 2011 Opt. Lett. 36 948

    [4]

    Feng T L 2015 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [冯天利 2015 博士学位论文 (济南: 山东大学)]

    [5]

    Gluth A, Wang Y, Petrov V, Paajaste J, Suomalainen S, Härkönen A 2015 Opt. Express 23 1361

    [6]

    Yang K J, Bromberger H, Heinecke D, Kölbl C, Schäfer H, Dekorsy T 2012 Opt. Express 20 18630

    [7]

    Ma J, Xie G Q, Gao W L, Yuan P, Qian L J, Yu H H 2012 Opt. Express 37 1376

    [8]

    Yao B Q, Wang W, Tian Y, Li G, Wang Y Z 2011 Laser Phys. 21 2020

    [9]

    Denisov I A, Skoptsov N A, Gaponenko M S, Malyarevich A M, Yumashev K V, Lipovskii A A 2009 Opt. Express 34 3403

    [10]

    Wan H, Cai W, Wang F, Jiang S, Xu S, Liu J 2016 Opt. Quantum Electron. 48 1

    [11]

    Wang K, Wang J, Fan J, Lotya M, O'Neill A, Fox D 2013 Acs Nano. 7 9260

    [12]

    Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y 2014 Adv. Mater. 26 3538

    [13]

    Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H 2015 Photon. Res. 3 A47

    [14]

    Zou X, Leng Y X, Li Y Y, Feng Y Y, Zhang P X, Hang Y, Wang J 2015 Chin. Opt. Express 13 081405

    [15]

    Wang X, Wang Y, Duan L, Li L, Sun H 2016 Opt. Commun. 367 234

    [16]

    Molinasánchez A, Wirtz L 2011 Phys. Rev. B 84 15

    [17]

    Chen B, Zhang X, Wu K, Wang H, Wang J, Chen J 2015 Opt. Express 23 26723

    [18]

    Li L, Jiang S, Wang Y, Wang X, Duan L, Mao D 2015 Opt. Express 23 28698

    [19]

    Khazaeinezhad R, Kassani S H, Jeong H, Park K J 2015 IEEE Photon. Technol. Lett. 27 1

    [20]

    Jung M, Lee J, Park J, Koo J, Jhon Y M, Ju H L 2015 Opt. Express 23 19996

    [21]

    Qiao L, Yang F G, Wu Y H, Ke Y G, Xia Z C 2014 Acta Phys. Sin. 63 214205 (in Chinese) [乔亮, 羊富贵, 武永华, 柯友刚, 夏忠朝 2014 物理学报 63 214205]

    [22]

    Peng H, Zhang K, Zhang L, Hang Y, Xu J, Tang Y 2010 Chin. Opt. Express 8 63

    [23]

    Zhang X, Yu L, Zhang S, Li L, Zhao J, Cui J 2013 Opt. Express 21 12629

    [24]

    Zhang Y H, Li N, Xu J C, Xi L 2004 China Journal of Chinese Materia Medica 29 101 (in Chinese) [张韵慧, 李宁, 许建辰, 肖莉2004 中国中药杂志29 101]

    [25]

    Zeng H, Liu G B, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608

    [26]

    Ling W J, Zheng J A, Jia Y L, Wei Z Y 2005 Acta Phys. Sin. 54 1619 (in Chinese) [令维军, 郑加安, 贾玉磊, 魏志义 2005 物理学报 54 1619]

    [27]

    Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D, Wang F Q 2013 Sci. Rep. 3 2718

    [28]

    Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H, Zhang H J 2015 Photon. Res. 3 A47

    [29]

    Liu X M, Cui Y D, Han D D, Yao X K, Sun Z P 2015 Sci. Rep. 5 9101

    [30]

    Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S 2010 Opt. Express 35 3027

  • Citation:
Metrics
  • Abstract views:  1303
  • PDF Downloads:  174
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2017
  • Accepted Date:  30 March 2017
  • Published Online:  05 June 2017

Passively Q-switched mode-locked Tm, Ho:LLF laser with a WS2 saturable absorber

Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61465012, 61564008, 61461046, 61665010).

Abstract: Using few-layer tungsten disulfide (WS2) doped polyvinyl alcohol as a saturable absorber for the initiation of the pulse generation, we experimentally demonstrate stable passively Q-switched mode-locked operations of Tm, Ho:LiLuF4 laser at 1895 nm for the first time. The laser is designed with an X-type four-mirror cavity and pumped by a Ti:sapphire laser operated at 785 nm, and its continuous operation is initiated when the absorbed pump power is 143 mW. When the absorbed pump power reaches 2.645 W, we obtain a maximum output power of 985 mW and a crystal slope efficiency of 39.8% by linear fitting. When the saturable absorber WS2 is inserted in the cavity, the threshold of the absorbed pump power is increased to 234 mW. With the increase of the pump power, Q-switch pulse sequence is first observed. When the absorbed pump power reaches 1.39 W, the stable operation of the Q-switched mode locked pulse is realized. A maximum average output power of 156 mW is achieved at an absorbed pump power of 2.6 W, which corresponds to a 25 kHz Q-switched repetition rate and a 300 μs-long pulse envelope. In this case, the modulation depth in Q-switching envelopes is close to 100%. After the passively Q-switched mode-locked is obtained stably, the mode-locked pulses inside the Q-switched pulse envelope have a repetition rate of 131.6 MHz, corresponding to a mode locked pulse energy of 1.19 nJ and a cavity length of 1.14 m. According to the definition of the rise time and considering the symmetric shape of the mode locked pulse, we can assume that the duration of the pulse is approximately 1.25 times more than the rise time of the pulse. Then the width of the mode locked pulse is estimated to be about 878 ps. These experimental results show that WS2 is a promising broadband saturable absorption material for generating a 2 μm-wavelength mid-infrared solid-state laser pulse. By increasing the pump power and reducing the loss of WS2 material, it is possible to realize a continuous mode locking operation which has a narrower pulse duration. The mode-locked mid-infrared pulses are very stable and have a lot of potential applications such as ultrafast molecule spectroscopy, mid-IR pulse generation, laser radar, atmospheric environment monitoring, etc.

Reference (30)

Catalog

    /

    返回文章
    返回