Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Size-controlled resistive switching performance and regulation mechanism of SnO2 QDs

Gong Shao-Kang Zhou Jing Wang Zhi-Qing Zhu Mao-Cong Shen Jie Wu Zhi Chen Wen

Citation:

Size-controlled resistive switching performance and regulation mechanism of SnO2 QDs

Gong Shao-Kang, Zhou Jing, Wang Zhi-Qing, Zhu Mao-Cong, Shen Jie, Wu Zhi, Chen Wen
PDF
HTML
Get Citation
  • As a non-volatile memory, zero-dimensional quantum dot resistive random access memory (RRAM) has shown broad application prospects in the field of intelligent electronic devices due to its advantages of simple structure, low switching voltage, fast response speed, high storage density, and low power consumption. Tin dioxide quantum dots (SnO2 QDs) are a good option for resistive functional materials with excellent physical and chemical stabilities, high electron mobilities, and adjustable energy band structures. In this paper, the SnO2 QDs with sizes of 2.51 nm, 2.96 nm and 3.53 nm are prepared by the solvothermal method, and the quantum size effect is observed in a small size range and the effective regulation of resistive switching voltage is achieved based on its quantum size effect, which is the unique advantage of quantum dot material in comparison with that of bulk material. Research result shows that as the size of SnO2 QD increases, the SET/RESET voltage gradually decreases from –3.18 V/4.35 V to –2.02 V/3.08 V. The 3.53 nm SnO2 QDs have lower SET/RESET voltage (–2.02 V/3.08 V) and larger resistive switching ratio (> 104), and the resistive switching performance of the device has changed less than 5% after having experienced durability tests 2 × 104 times, showing good stability and retention. Besides, according to the fitting of charge transport mechanism, SnO2 QD RRAM exhibits Ohmic conduction under LRS, while Ohmic conduction, thermionic emission and space charge limit current work together during HRS. The resistive switching effect of SnO2 QDs is controlled by trap filled limit current and interface Schottky Barrier modulation; the trapping/de-trapping behavior of internal defect potential well of SnO2 QDs on electrons dominates the HRS/LRS switching, while the effective control of ITO/SnO2 QDs and SnO2 QDs/Au interface Schottky barrier is the key to accurately regulating the switching voltage. The reason why SnO2 QD RRAM exhibits good size-switching voltage dependence is that the larger SnO2 QD has lower Fermi level and interface Schottky barrier height, so the junction resistance voltage division is reduced, and the SET/RESET voltage decrease accordingly. This work reveals the huge application potential and commercial application value of SnO2 QDs in the field of resistive switching memory, and provides a new option for the development of RRAM.
      Corresponding author: Zhou Jing, zhoujing@whut.edu.cn
    • Funds: Project Supported by the National Natural Science Foundation of China (Grant Nos. 51572205, 51802093), the National Key R&D Program of China (Grant No. 2016YFB0303904), the Fundamental Research Fund for the Central Universities, China (Grant Nos. WUT: 2018III019, 2019IVA108, 2020III021), and the Scientific Research Project of Hunan Education Department, China (Grant No. 20B161)
    [1]

    Chen A 2016 Solid-State Electron. 125 25Google Scholar

    [2]

    Chang T C, Chang K C, Tsai T M, Chu T J, Sze S M 2016 Mater. Today 19 254Google Scholar

    [3]

    Li Y, Chu J, Duan W, Cai G, Fan X, Wang X, Wang G, Pei Y 2018 ACS Appl. Mater. Interfaces 10 24598Google Scholar

    [4]

    史晨阳, 闵光宗, 刘向阳 2020 物理学报 69 178702Google Scholar

    Shi C Y, Min G Z, Liu X Y 2020 Acta Phys. Sin. 69 178702Google Scholar

    [5]

    Zhou G, Yang X, Xiao L, Sun B, Zhou A 2019 Appl. Phys. Lett. 114 163506Google Scholar

    [6]

    Gao S, Yi X, Shang J, Liu G, Li R W 2019 Chem. Soc. Rev. 48 1531Google Scholar

    [7]

    Zhou D, Chen F G, Han S, Hu W, Zang Z G, Hu Z P, Li S Q, Tang X S 2018 Ceram. Int. 44 S152Google Scholar

    [8]

    孙劲鹏, 王太宏 2003 物理学报 52 2563Google Scholar

    Sun J P, Wang T H 2003 Acta Phys. Sin 52 2563Google Scholar

    [9]

    Datta S 2013 Quantum Transport: Atom to Transistor (England: Cambridge University Press) pp18, 170, 285

    [10]

    Fan F, Zhang B, Cao Y, Yang X, Gu J, Chen Y 2017 Nanoscale 9 10610Google Scholar

    [11]

    Yan X, Pei Y, Chen H, Zhao J, Zhou Z, Wang H, Zhang L, Wang J, Li X, Qin C, Wang G, Xiao Z, Zhao Q, Wang K, Li H, Ren D, Liu Q, Zhou H, Chen J, Zhou P 2019 Adv. Mater. 31 1805284Google Scholar

    [12]

    Younis A, Chu D, Mihail I, Li S 2013 ACS Appl. Mater. Interfaces 5 9429Google Scholar

    [13]

    Wang Z Q, Liu Y L, Shen J, Chen W, Miao J, Li A, Liu K, Zhou J 2020 Sci. China Mater. 63 2497Google Scholar

    [14]

    Chen Z, Zhang Y, Yu Y, Cao M, Che Y, Jin L, Li Y, Li Q, Li T, Dai H, Yang J, Yao J 2019 Appl. Phys. Lett. 114 181103Google Scholar

    [15]

    Wang H, Yan X B 2019 Phys. Status Solidi RRL 13 1900073Google Scholar

    [16]

    Banerjee W, Liu Q, Long S B, Lv H B, Liu M 2017 J. Phys. D: Appl. Phys. 50 303002Google Scholar

    [17]

    Hwang B H, Lee J S 2018 Adv. Electron. Mater. 5 1800519

    [18]

    贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 217306Google Scholar

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306Google Scholar

    [19]

    Chen K Q, Zhou J, Chen W, Zhou P, He F, Liu Y L 2015 Part. Part. Syst. Char. 32 999Google Scholar

    [20]

    Chen D Y, Huang S H, Huang R, Zhang Q, Le T T, Cheng E, Hu Z J, Chen Z W 2018 Mater. Res. Lett. 6 462Google Scholar

    [21]

    Xu Z M, Guan P Y, Younis A, Chu D W, Li S 2017 RSC Adv. 7 56390Google Scholar

    [22]

    Sarkar P K, Bhattacharjee S, Prajapat M, Roy A 2015 RSC Adv. 5 105661Google Scholar

    [23]

    Shaalan N W, Hamad D, Abdel-Latief A Y, Abdel-Rahim M A 2016 Prog. Nat. Sci. 26 145Google Scholar

    [24]

    Onlaor K, Thiwawong T, Tunhoo B 2014 Org. Electron. 15 1254Google Scholar

    [25]

    Braun D 2010 J. Polym. Sci. Pol. Phys. 41 2622

    [26]

    Zhang X G, Pantelides S T 2012 Phys. Rev. Lett. 108 266602Google Scholar

    [27]

    Valov I, Waser R, Jameson J R, Kozicki M N 2011 Nanotechnology 22 254003Google Scholar

    [28]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [29]

    Anoop G, Kim T Y, Lee H J, Panwar V, Kwak J H, Heo Y J, Yang J H, Lee J H, Jo J Y 2017 Adv. Electron. Mater. 3 1700264Google Scholar

    [30]

    Zhang P, Xu B, Gao C, Chen G L, Gao M Z 2016 ACS Appl. Mater. Interfaces 8 30336Google Scholar

    [31]

    Nieh C H, Lu M L, Weng T M, Chen Y F 2014 Appl. Phys. Lett. 104 1951

    [32]

    刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301Google Scholar

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar

    [33]

    Dash C S, Prabaharan S R S 2019 Rev. Adv. Mater. Sci. 58 248Google Scholar

    [34]

    Jeong J S, Topsakal M, Xu P, Jalan B, Wentzcovitch R M, Mkhoyan K A 2016 Nano Lett. 16 6816Google Scholar

    [35]

    Kumar A, Mukherjee S, Kranti A 2018 J. Phys. D: Appl. Phys. 51 405601Google Scholar

    [36]

    Hsu C C, Wang S Y, Lin Y S, Chen Y T 2018 J. Alloys Compd. 779 609

    [37]

    Shi H P, Zheng J P, Cheng B C, Zhao J, Su X H, Xiao Y H, Lei S J 2017 J. Mater. Chem. C 5 229Google Scholar

    [38]

    Khan M T, Agrawal V, Almohammedi A, Gupta V 2018 Solid State Electron. 145 49Google Scholar

    [39]

    Mei F, Shen H, Li L B, Zang G Z, Zhou M, Ti R X, Yang D Y, Huang F Z, Lu X M, Zhu J S 2017 Appl. Phys. Lett. 111 143503Google Scholar

    [40]

    Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

  • 图 1  不同反应温度下制备的SnO2 QDs 的TEM图像 (a) 160 ℃; (b) 180 ℃; (c) 200 ℃. 插图分别为对应的SnO2 QDs尺寸分布直方图. 3.53 nm SnO2 QDs的(d)局部HRTEM图像, (e) 选区电子衍射图像与(f) EDS能谱分析

    Figure 1.  TEM images of SnO2 QDs prepared at (a) 160 ℃, (b) 180 ℃ and (c) 200 ℃. Inset gives the distribution histogram of SnO2 QDs size. (d) Magnified TEM image, (e) SAED pattern and (f) EDS spectrum of 3.53 nm SnO2 QDs.

    图 2  SnO2 QDs的UPS图谱 (a) 2.51 nm; (b) 2.96 nm; (c) 3.53 nm. 插图为费米边、二次电子截止边截距. 不同尺寸SnO2 QDs 的(d) UV-vis光谱, (e) 光学禁带曲线及(f) 能带结构示意图

    Figure 2.  UPS spectra of (a) 2.51 nm, (b) 2.96 nm and (c) 3.53 nm of SnO2 QDs, and insets shows the Secondary electron cutoff and Fermi edge intercepts. (d) UV-vis absorption spectra, (e) optical band gaps plots and (f) energy band structure of SnO2 QDs with different sizes.

    图 3  (a) ITO与(b) SnO2 QDs薄膜的表面SEM图像. (c) SnO2 QDs RRAM的器件结构示意图及(d) 横截面FESEM图像

    Figure 3.  Surface SEM picture of (a) ITO and (b) SnO2 QDs film. (c) Device structure schematic diagram of SnO2 QDs RRAM and its (d) cross-sectional FESEM image.

    图 4  (a) 不同尺寸下SnO2 QDs RRAM的I-V特性曲线; (b) SET/RESET电压随SnO2 QDs尺寸的变化曲线; (c) 不同尺寸SnO2 QDs RRAM的循环稳定性曲线, 插图为施加的脉冲电压直方图; (d) 3.53 nm SnO2 QDs RRAM的SET/RESET电压频率分布直方图

    Figure 4.  (a) I-V curves of SnO2 QDs RRAM with different sizes; (b) variation of SET/RESET voltage with SnO2 QDs size; (c) cycle stability tests of SnO2 QDs RRAM and inset shows the impulse voltage curve; (d) SET/RESET voltage distribution of 3.53 nm SnO2 QDs RRAM.

    图 5  3.53 nm SnO2 QDs RRAM在(a) SET过程, (b) RESET过程的电导机制拟合曲线; 局部区域的电导机制拟合(c) SET过程V1-VSET阶段, (d) RESET过程V2-Vmax阶段

    Figure 5.  Conduction mechanism fitting curves of (a) SET process and (b) RESET process on 3.53 nm SnO2 QDs RRAM. Local region of conduction mechanism (c) stage of V1-VSET in SET process; (d) stage of V2-Vmax in RESET process.

    图 6  (a) ITO/SnO2 QDs/Au界面势垒模型; 各阶段的阻变行为 (b) 热电子发射区域; (c) SET过程; (d) RESET过程; (e) SCLC区域; (f) RESET阶段热电子发射区域

    Figure 6.  (a) Schematic diagram of ITO/SnO2 QDs/Au interfacial barrier model and resistive switching behavior in (b) thermionic emission, (c) SET, (d) RESET, (e) SCLC, (f) thermionic emission of RESET process.

  • [1]

    Chen A 2016 Solid-State Electron. 125 25Google Scholar

    [2]

    Chang T C, Chang K C, Tsai T M, Chu T J, Sze S M 2016 Mater. Today 19 254Google Scholar

    [3]

    Li Y, Chu J, Duan W, Cai G, Fan X, Wang X, Wang G, Pei Y 2018 ACS Appl. Mater. Interfaces 10 24598Google Scholar

    [4]

    史晨阳, 闵光宗, 刘向阳 2020 物理学报 69 178702Google Scholar

    Shi C Y, Min G Z, Liu X Y 2020 Acta Phys. Sin. 69 178702Google Scholar

    [5]

    Zhou G, Yang X, Xiao L, Sun B, Zhou A 2019 Appl. Phys. Lett. 114 163506Google Scholar

    [6]

    Gao S, Yi X, Shang J, Liu G, Li R W 2019 Chem. Soc. Rev. 48 1531Google Scholar

    [7]

    Zhou D, Chen F G, Han S, Hu W, Zang Z G, Hu Z P, Li S Q, Tang X S 2018 Ceram. Int. 44 S152Google Scholar

    [8]

    孙劲鹏, 王太宏 2003 物理学报 52 2563Google Scholar

    Sun J P, Wang T H 2003 Acta Phys. Sin 52 2563Google Scholar

    [9]

    Datta S 2013 Quantum Transport: Atom to Transistor (England: Cambridge University Press) pp18, 170, 285

    [10]

    Fan F, Zhang B, Cao Y, Yang X, Gu J, Chen Y 2017 Nanoscale 9 10610Google Scholar

    [11]

    Yan X, Pei Y, Chen H, Zhao J, Zhou Z, Wang H, Zhang L, Wang J, Li X, Qin C, Wang G, Xiao Z, Zhao Q, Wang K, Li H, Ren D, Liu Q, Zhou H, Chen J, Zhou P 2019 Adv. Mater. 31 1805284Google Scholar

    [12]

    Younis A, Chu D, Mihail I, Li S 2013 ACS Appl. Mater. Interfaces 5 9429Google Scholar

    [13]

    Wang Z Q, Liu Y L, Shen J, Chen W, Miao J, Li A, Liu K, Zhou J 2020 Sci. China Mater. 63 2497Google Scholar

    [14]

    Chen Z, Zhang Y, Yu Y, Cao M, Che Y, Jin L, Li Y, Li Q, Li T, Dai H, Yang J, Yao J 2019 Appl. Phys. Lett. 114 181103Google Scholar

    [15]

    Wang H, Yan X B 2019 Phys. Status Solidi RRL 13 1900073Google Scholar

    [16]

    Banerjee W, Liu Q, Long S B, Lv H B, Liu M 2017 J. Phys. D: Appl. Phys. 50 303002Google Scholar

    [17]

    Hwang B H, Lee J S 2018 Adv. Electron. Mater. 5 1800519

    [18]

    贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 217306Google Scholar

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306Google Scholar

    [19]

    Chen K Q, Zhou J, Chen W, Zhou P, He F, Liu Y L 2015 Part. Part. Syst. Char. 32 999Google Scholar

    [20]

    Chen D Y, Huang S H, Huang R, Zhang Q, Le T T, Cheng E, Hu Z J, Chen Z W 2018 Mater. Res. Lett. 6 462Google Scholar

    [21]

    Xu Z M, Guan P Y, Younis A, Chu D W, Li S 2017 RSC Adv. 7 56390Google Scholar

    [22]

    Sarkar P K, Bhattacharjee S, Prajapat M, Roy A 2015 RSC Adv. 5 105661Google Scholar

    [23]

    Shaalan N W, Hamad D, Abdel-Latief A Y, Abdel-Rahim M A 2016 Prog. Nat. Sci. 26 145Google Scholar

    [24]

    Onlaor K, Thiwawong T, Tunhoo B 2014 Org. Electron. 15 1254Google Scholar

    [25]

    Braun D 2010 J. Polym. Sci. Pol. Phys. 41 2622

    [26]

    Zhang X G, Pantelides S T 2012 Phys. Rev. Lett. 108 266602Google Scholar

    [27]

    Valov I, Waser R, Jameson J R, Kozicki M N 2011 Nanotechnology 22 254003Google Scholar

    [28]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [29]

    Anoop G, Kim T Y, Lee H J, Panwar V, Kwak J H, Heo Y J, Yang J H, Lee J H, Jo J Y 2017 Adv. Electron. Mater. 3 1700264Google Scholar

    [30]

    Zhang P, Xu B, Gao C, Chen G L, Gao M Z 2016 ACS Appl. Mater. Interfaces 8 30336Google Scholar

    [31]

    Nieh C H, Lu M L, Weng T M, Chen Y F 2014 Appl. Phys. Lett. 104 1951

    [32]

    刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301Google Scholar

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar

    [33]

    Dash C S, Prabaharan S R S 2019 Rev. Adv. Mater. Sci. 58 248Google Scholar

    [34]

    Jeong J S, Topsakal M, Xu P, Jalan B, Wentzcovitch R M, Mkhoyan K A 2016 Nano Lett. 16 6816Google Scholar

    [35]

    Kumar A, Mukherjee S, Kranti A 2018 J. Phys. D: Appl. Phys. 51 405601Google Scholar

    [36]

    Hsu C C, Wang S Y, Lin Y S, Chen Y T 2018 J. Alloys Compd. 779 609

    [37]

    Shi H P, Zheng J P, Cheng B C, Zhao J, Su X H, Xiao Y H, Lei S J 2017 J. Mater. Chem. C 5 229Google Scholar

    [38]

    Khan M T, Agrawal V, Almohammedi A, Gupta V 2018 Solid State Electron. 145 49Google Scholar

    [39]

    Mei F, Shen H, Li L B, Zang G Z, Zhou M, Ti R X, Yang D Y, Huang F Z, Lu X M, Zhu J S 2017 Appl. Phys. Lett. 111 143503Google Scholar

    [40]

    Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

  • [1] Li Wei, Zhu Hui-Wen, Sun Tong, Qu Wen-Shan, Li Jian-Gang, Yang Hui, Gao Zhi-Xiang, Shi Wei, Wei Bin, Wang Hua. High endurance organic resistive switching memory based on 1, 2-dicyanobenzene and polymer composites. Acta Physica Sinica, 2023, 72(4): 048501. doi: 10.7498/aps.72.20221507
    [2] Guan Dan-Dan, Jia Jin-Feng. Surface physics in China. Acta Physica Sinica, 2023, 72(23): 236801. doi: 10.7498/aps.72.20231858
    [3] Wang Ying, Huang Hui-Xiang, Huang Xiang-Lin, Guo Ting-Ting. Resistive switching characteristics of HfOx-based resistance random access memory under photoelectric synergistic regulation. Acta Physica Sinica, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [4] Zhou Zheng, Huang Peng, Kang Jin-Feng. Non-volatile memory based in-memory computing technology. Acta Physica Sinica, 2022, 71(14): 148507. doi: 10.7498/aps.71.20220397
    [5] Zhu Mao-Cong, Shao Ya-Jie, Zhou Jing, Chen Wen, Wang Zhi-Qing, Tian Jing. Resistive properties of CuInS2 quantum dots regulated by niobium-doped lead zirconate titanate ferroelectric films. Acta Physica Sinica, 2022, 71(20): 207301. doi: 10.7498/aps.71.20220911
    [6] Zeng Fan-Ju, Tan Yong-Qian, Tang Xiao-Sheng, Zhang Xiao-Mei, Yin Hai-Feng. Progress of lead-free perovskite and its resistance switching performance. Acta Physica Sinica, 2021, 70(15): 157301. doi: 10.7498/aps.70.20210065
    [7] Zhang Zhi-Chao, Wang Fang, Wu Shi-Jian, Li Yi, Mi Wei, Zhao Jin-Shi, Zhang Kai-Liang. Influneces of different oxygen partial pressures on switching properties of Ni/HfOx/TiN resistive switching devices. Acta Physica Sinica, 2018, 67(5): 057301. doi: 10.7498/aps.67.20172194
    [8] Guo Jia-Jun, Dong Jing-Yu, Kang Xin, Chen Wei, Zhao Xu. Effect of transition metal element X (X=Mn, Fe, Co, and Ni) doping on performance of ZnO resistive memory. Acta Physica Sinica, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [9] Huo Da-Yun, Shi Zhen-Wu, Zhang Wei, Tang Shen-Li, Peng Chang-Si. Barrier growth temperature of InGaAs/AlGaAs-quantum well infrared photodetector. Acta Physica Sinica, 2017, 66(6): 068501. doi: 10.7498/aps.66.068501
    [10] Dai Yue-Hua, Pan Zhi-Yong, Chen Zhen, Wang Fei-Fei, Li Ning, Jin Bo, Li Xiao-Feng. Orientation and concentration of Ag conductive filament in HfO2-based resistive random access memory: first-principles study. Acta Physica Sinica, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [11] Ye Peng-Fei, Chen Hai-Tao, Bu Liang-Min, Zhang Kun, Han Jiu-Rong. Synthesis of SnO2 quantum dots/graphene composite and its photocatalytic performance. Acta Physica Sinica, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [12] Jiang Ran, Du Xiang-Hao, Han Zu-Yin, Sun Wei-Deng. Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device. Acta Physica Sinica, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [13] Liao Kai-Sheng, Li Zhi-Feng, Li Liang, Wang Chao, Zhou Xiao-Hao, Dai Ning, Li Ning. Interfacial barrier effects in blocked impurity band infrared detectors. Acta Physica Sinica, 2015, 64(22): 227302. doi: 10.7498/aps.64.227302
    [14] Chen Ran, Zhou Li-Wei, Wang Jian-Yun, Chen Chang-Jun, Shao Xing-Long, Jiang Hao, Zhang Kai-Liang, Lü Lian-Rong, Zhao Jin-Shi. Multilevel switching mechanism for resistive random access memory based on Cu/SiOx/Al structure. Acta Physica Sinica, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [15] Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning. Composite interfaces and electrode properties of resistive random access memory devices. Acta Physica Sinica, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [16] Wang Jin, Zhang Ru. Fabrication of InP nano inner cladding fiber and its amplification propertg based on quantum size effect. Acta Physica Sinica, 2009, 58(3): 1857-1862. doi: 10.7498/aps.58.1857
    [17] Lai Yun-Feng, Feng Jie, Qiao Bao-Wei, Ling Yun, Lin Yin-Yin, Tang Ting-Ao, Cai Bing-Chu, Chen Bang-Ming. Multiple-state storage capability of nitrogen-doped Ge2Sb2Te5 film for phase change memory. Acta Physica Sinica, 2006, 55(8): 4347-4352. doi: 10.7498/aps.55.4347
    [18] Hu Zhi-Hua, Liao Xian-Bo, Diao Hong-Wei, Xia Chao-Feng, Zeng Xiang-Bo, Hao Hui-Ying, Kong Guang-Lin. NIP a-Si:H solar cells on stanless steel with p-type nc-Si:H window layer. Acta Physica Sinica, 2005, 54(6): 2945-2949. doi: 10.7498/aps.54.2945
    [19] YANG SHENG-YI, WANG ZHEN-JIA, CHEN XIAO-HONG, HOU YAN-BING, DONG JIN-FENG, XU XU-RONG. INFLUENCE OF INTERFACE BARRIERS ON CARRIERS RECOMBINATION IN ORGANIC BILAYER DEVICES AT HIGH ELECTRIC FIELD. Acta Physica Sinica, 2000, 49(8): 1627-1631. doi: 10.7498/aps.49.1627
    [20] XIE WEN-FANG, CHEN CHUAN-YU. THE SIZE EFFECT OF ELECTRONIC STATES OF QUANTUM DOTS AND THE INFLUENCES OF MAGNETIC FIELDS. Acta Physica Sinica, 1998, 47(1): 102-106. doi: 10.7498/aps.47.102
Metrics
  • Abstract views:  3875
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2021
  • Accepted Date:  31 May 2021
  • Available Online:  22 September 2021
  • Published Online:  05 October 2021

/

返回文章
返回