Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of saturated triglycerides under electric field

Wang Ya-Chao Lin Xiao-Ran Wang Mei Wang Ji-Fang Chen Ling

Citation:

Characteristics of saturated triglycerides under electric field

Wang Ya-Chao, Lin Xiao-Ran, Wang Mei, Wang Ji-Fang, Chen Ling
PDF
HTML
Get Citation
  • Short-medium chain saturated triglyceride is a low viscosity and degradable liquid dielectric material, which has potential applications in the field of transformer internal insulation. In this paper, the molecular properties of short-medium chain saturated triglycerides under the action of electric field are studied by using density functional theory and time-dependent density functional theory. The results show that the molecular bond length is obviously dependent on the electric field intensity, which is consistent with the shift of the infrared wave number peak. Under the same electric field, with the increase of the length of carbon chain, the dipole moment and polarity of the molecule increase correspondingly. When the electric field intensity is 109 V/m, the energy of the highest occupied molecular orbital of tricaprylin and tricaprin increases obviously, and the ionization potential decreases sharply. The difference in excitation characteristic between molecules is small, and the decrease of excitation energy is much smaller than that of ionization potential under the same electric field. The results are helpful in improving the understanding of discharge mechanism in ester dielectric, and provide the theoretical support for the performance improvement of natural ester insulating oil.
      Corresponding author: Lin Xiao-Ran, lxr1236@126.com ; Wang Mei, qfwmei@126.com
    • Funds: Project supported by the Science and Technology Research Project of Higher Education of Hebei Province, China (Grant No. QN2019069) and the Research Foundation of Hebei University of Economics and Business, China (Grant No. 2019YB11).
    [1]

    Dong L, Zhong X, He J, Zhang L, Huang X 2016 Clin. Nutr. 35 399Google Scholar

    [2]

    Heerdt B G, Houston M A, Anthony G M, Augenlicht L H 1999 Cancer Res. 59 1584

    [3]

    Fofana I 2013 IEEE Electr. Insul. Mag. 29 13Google Scholar

    [4]

    Wedin P 2014 IEEE Electr. Insul. Mag. 30 20Google Scholar

    [5]

    Thakur S, Sarathi R, Danikas M G 2019 Electr. Eng. 101 1007Google Scholar

    [6]

    Dombek G, Gielniak J 2018 IEEE Trans. Dielectr. Electr. Insul. 5 1846Google Scholar

    [7]

    Trnka P, Hornak J, Prosr P, Michal O, Wang F 2020 IEEE Access 8 61989Google Scholar

    [8]

    Rozga P 2016 IET Sci. Meas. Technol. 10 665Google Scholar

    [9]

    Rodríguez M, Galán M 1995 Chem. Eng. J. 60 117Google Scholar

    [10]

    Tobazcon R 1994 IEEE Trans. Dielectr. Electr. Insul. 1 1132Google Scholar

    [11]

    Beroual A, Zahn M, Badent A, Kist K, Torshin Y 1998 IEEE Electr. Insul. Mag. 14 6Google Scholar

    [12]

    Rozga P 2015 IEEE Trans. Dielectr. Electr. Insul. 22 2754Google Scholar

    [13]

    Li J, Wang Y C, Wang F P, Liang S N, Lin X, Chen X P, Zhou J H 2017 Phys. Lett. A 381 3732Google Scholar

    [14]

    Wang Y C, Wang F P, Li J, Liang S N, Zhou J H 2018 Energies 11 523Google Scholar

    [15]

    Smalo H S, Hestad Ø, Ingebrigtsen S, Åstrand P O 2011 J. Appl. Phys. 109 073306Google Scholar

    [16]

    Wang Y C, Wang F P, Li J, Huang Z Y, Liang S N, Zhou J H 2017 Energies 10 510Google Scholar

    [17]

    黄多辉, 王藩侯, 程晓洪, 万明杰 蒋刚 2011 物理学报 60 123101Google Scholar

    Huang D H, Wang P H, Cheng X H, Wang M J, Jiang G 2011 Acta Phys. Sin. 60 123101Google Scholar

    [18]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113201Google Scholar

    [19]

    曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101Google Scholar

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101Google Scholar

    [20]

    Xu G L, Xie H X, Wei Y, Zhang X Z Liu Y F 2012 Chin. Phys. B 21 153Google Scholar

    [21]

    Grozema F C, Telesca R, Jonkman H T, Siebbeles L, Snijders J G 2001 J. Chem. Phys. 115 10014Google Scholar

    [22]

    杜建宾, 武德起, 唐延林, 隆正文 2015 物理学报 64 073101Google Scholar

    Du J B, Wu D Q, Tang Y L, Long Z W 2015 Acta Phys. Sin. 64 073101Google Scholar

    [23]

    袁伟 2013 硕士学位论文 (新乡: 河南师范大学)

    Yuan W 2013 M. S. Thesis (Xinxiang: Henan Normal University) (in Chinese)

    [24]

    NIST Computational Chemistry Comparison and Benchmark Data Basehttp://cccbdb.nist.gov/vibscalejust.asp [2020-8-1]

    [25]

    NIST Standard Reference Database 69: Chemistry WebBook https://webbook.nist.gov/chemistry/ [2018-10-1]

    [26]

    凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠 2013 物理学报 62 223102Google Scholar

    Ling Z G, Tang Y L, Li T, Li Y P, Wei X N 2013 Acta Phys. Sin. 62 223102Google Scholar

    [27]

    李晓虎 2006 博士学位论文 (重庆: 重庆大学)

    Li X H 2006 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [28]

    李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平 秦水介 2015 物理学报 64 043101Google Scholar

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qing S J 2015 Acta Phys. Sin. 64 043101Google Scholar

    [29]

    Li J, Liu X Y, Zhu Z H, Sheng Y 2012 Chin. Phys. B 21 033101Google Scholar

    [30]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [31]

    Smalo H S, Astrand P O Ingebrigtsen S 2010 IEEE Trans. Dielectr. Electr. Insul. 17 733Google Scholar

    [32]

    Jadidian J, Zahn M, Lavesson N, Widlund O, Borg K 2012 IEEE Trans. Plasma Sci. 40 909Google Scholar

  • 图 1  C6∶0的分子构型

    Figure 1.  Molecular configuration of C6∶0.

    图 2  电场下C6∶0的分子的红外光谱

    Figure 2.  The infrared spectra of C6∶0 molecule under electric field.

    图 3  电场下分子的偶极矩

    Figure 3.  The molecular dipole moment under electric field.

    图 4  电场下分子的总能量

    Figure 4.  The molecular total energy under electric field.

    图 5  电场下分子的前线轨道能量

    Figure 5.  The Frontier molecular orbital energy under electric field.

    图 6  电场下分子的能隙

    Figure 6.  The molecular energy gap under electric field.

    图 7  电场下C6∶0分子的前线轨道云图

    Figure 7.  The cloud image of C6∶0 molecular frontier orbital under electric field.

    图 8  电场下不同分子的电离势

    Figure 8.  The ionization potential of different molecules under electric field.

    表 1  不同计算方法的比较

    Table 1.  Comparison of different calculation methods

    方法甘油
    三酯
    波数 v/ cm–1
    C—O—OC=OC—H
     C2:01235.81816.32938.4
    C4:01185.91809.52938.3
    HF/631+
    G*/0.90
    C6:011621809.22926.4
    C8:01179.51809.12926.2
    C10:01160.21808.92908.9
    C2:01173.91787.12602.1
    C4:01131.21778.32993.7
    B3LYP/631G*/0.96C6:01126.81778.22983.1
    C8:01125.21778.22981.7
    C10:01089.31778.22907.7
    C2:01181.61756.82956.7
    C4:01123.31750.72987.5
    B3LYP/631+G*/0.96C6:01119.11750.52975.6
    C8:01117.61750.42940.5
    C10:01116.51750.42943.9
    C2:01164.11751.32936.3
    C4:01107.61745.42966.1
    B3LYP/6311++G**/0.96C6:01104.21745.12959.5
    C8:0110317452895.9
    C10:01102.317452929.9
    C2:01208.01738.62950.0
    实验值C4:01159.01736.52962.5
    C6:01159.81744.42950.4
     C8:01155.51747.52958.3
    C10:0
    DownLoad: CSV

    表 2  电场下C6∶0分子的键长

    Table 2.  Bond length of C6∶0 molecule under electric field.

    E/(108 V·m–1)2C—9O/Å12C—9O/Å12C=13O/Å5C—10O/Å14C—10O/Å14C = 15O/Å1C—11O/Å16C=17O/Å
    –381.4351.3891.2051.4341.3791.2091.4381.214
    –251.4341.3881.2071.4331.3791.2071.4321.211
    –131.4341.3841.2071.4311.3761.2071.4301.209
    –5.11.4341.3811.2071.4311.3731.2061.4291.208
    –2.61.4341.3801.2071.4321.3721.2081.4281.208
    01.4341.3801.2071.4331.3711.2071.4281.207
    2.61.4341.3791.2071.4331.3701.2081.4281.207
    5.11.4341.3781.2071.4341.3691.2081.4281.207
    131.4351.3751.2081.4361.3661.2101.4281.206
    251.4341.3731.2091.4391.3601.2131.4281.205
    381.4341.3701.2111.4431.3551.2161.4251.203
    DownLoad: CSV

    表 3  电场下C6∶0分子的前线轨道组分

    Table 3.  The frontier orbital composition of C6∶0 molecule under electric field.

    E/(108 V·m–1)Composition of the HOMO and LUMO (>3%)
    –38HOMO5C∶3.73, 12C∶4.49, 37C∶3.35, 40C∶11.88, 43H∶4.08, 45C∶18.02, 46C∶13.24, 47H∶4.2, 48H∶10.08, 50H∶6.99
    LUMO1C∶18.58, 2C∶18.88, 5C∶31.84, 18C∶6.56, 19C∶10.27, 22C∶6.87
    –5.1HOMO2C∶3.07, 12C∶3.36, 13O∶34.35, 36C∶25.08, 37C∶5.25, 40C∶4.97
    LUMO1C∶7.12, 2C∶7.25, 14C∶5.28, 18C∶25.35, 19C∶33.40, 27C∶6.48, 28C3.29, 31C∶3.17
    0HOMO2C∶5.86, 5C∶5.03, 11O∶7.80, 17O∶31.35, 18C∶17.39, 19C∶5.15, 22C∶5.58
    LUMO1C∶5.77, 2C∶6.75, 14C∶4.68, 18C∶26.92, 19C∶32.22, 27C∶7.36, 28C∶4.81, 31C∶3.87
    5.1HOMO2C∶5.62, 5C∶4.92, 11O∶8.19, 12C∶3.31, 16C∶3.17, 17O∶32.67, 18C∶17.61, 19C∶5.21, 22C∶5.88
    LUMO1C∶8.10, 2C∶9.33, 14C∶3.39, 18C∶7.20, 19C∶29.10, 27C∶6.93, 28C∶4.89, 31C∶4.08
    38HOMO1C∶15.52, 2C∶31.37, 18C∶5.46, 19C∶7.80, 52C∶8.47, 53C∶6.22, 54H∶4.66, 55H∶5.03, 57H∶3.53, 58H∶3.32
    LUMO27C∶9.74, 28C∶26.00, 31C∶33.47, 59C∶26.02
    DownLoad: CSV

    表 4  电场下分子的激发态

    Table 4.  The molecular excited state under electric field.

    分子E /(108 V·m–1) m = 1m = 2m = 3m = 4m = 5m = 6m = 7m = 8m = 9
    0Eex /eV5.62195.64225.66576.64496.66836.75036.77546.85326.8874
    λ /nm220.54219.74218.83186.59185.93183.67182.99180.91180.02
    f0.00090.00090.00040.00560.00150.01770.00960.00190.0032
    5.1Eex /eV5.61495.64185.66196.63586.68486.73566.76266.85066.8776
    C2∶0λ /nm220.81219.76218.98186.84185.47184.07183.34180.98180.27
    f0.00090.00090.00050.00710.00090.01690.00980.00410.0022
    26Eex /eV5.58595.63665.6436.39586.47346.55076.71106.80136.8396
    λ /nm221.96219.96219.71193.85191.53189.27184.75182.30181.27
    f0.00080.00090.00040.00400.00240.00700.00050.02270.0023
    0Eex /eV5.66095.67515.70146.60736.62486.72056.74786.85536.8990
    λ /nm219.02218.47217.46187.65187.15184.49183.74180.86179.71
    f0.00040.00050.00020.00170.01150.01130.00040.00130.0055
    5.1Eex /eV5.65515.67475.69916.60706.62716.70766.73916.85106.8983
    C6∶0λ /nm219.24218.49217.55187.66187.09184.84183.98180.97179.73
    f0.00040.00050.00020.01270.00060.01100.00020.00510.0017
    26Eex /eV5.63145.66975.68086.38066.45936.51786.72846.78546.8576
    λ /nm220.17218.68218.25194.31191.95190.22184.27182.72180.80
    f0.00040.00040.00010.00620.00110.00370.00040.01230.0011
    0Eex /eV5.65945.67355.70056.60056.61866.71336.74326.85166.8955
    λ /nm219.08218.53217.5187.84187.33184.68183.87180.96179.80
    f0.00040.00050.00020.00170.01240.01170.00040.00140.0056
    5.1Eex /eV5.65385.67345.69846.59916.62066.70026.73366.84436.8952
    C10∶0λ /nm219.29218.54217.58187.88187.27185.05184.13181.15179.81
    f0.00040.00050.00020.01360.00050.01150.00020.00520.0019
    26Eex /eV5.63035.66765.68126.37526.45616.50996.72466.77456.8546
    λ /nm220.21218.76218.24194.48192.04190.45184.37183.01180.88
     f0.00040.00040.00010.00670.00100.00400.00050.01320.0010
    DownLoad: CSV
  • [1]

    Dong L, Zhong X, He J, Zhang L, Huang X 2016 Clin. Nutr. 35 399Google Scholar

    [2]

    Heerdt B G, Houston M A, Anthony G M, Augenlicht L H 1999 Cancer Res. 59 1584

    [3]

    Fofana I 2013 IEEE Electr. Insul. Mag. 29 13Google Scholar

    [4]

    Wedin P 2014 IEEE Electr. Insul. Mag. 30 20Google Scholar

    [5]

    Thakur S, Sarathi R, Danikas M G 2019 Electr. Eng. 101 1007Google Scholar

    [6]

    Dombek G, Gielniak J 2018 IEEE Trans. Dielectr. Electr. Insul. 5 1846Google Scholar

    [7]

    Trnka P, Hornak J, Prosr P, Michal O, Wang F 2020 IEEE Access 8 61989Google Scholar

    [8]

    Rozga P 2016 IET Sci. Meas. Technol. 10 665Google Scholar

    [9]

    Rodríguez M, Galán M 1995 Chem. Eng. J. 60 117Google Scholar

    [10]

    Tobazcon R 1994 IEEE Trans. Dielectr. Electr. Insul. 1 1132Google Scholar

    [11]

    Beroual A, Zahn M, Badent A, Kist K, Torshin Y 1998 IEEE Electr. Insul. Mag. 14 6Google Scholar

    [12]

    Rozga P 2015 IEEE Trans. Dielectr. Electr. Insul. 22 2754Google Scholar

    [13]

    Li J, Wang Y C, Wang F P, Liang S N, Lin X, Chen X P, Zhou J H 2017 Phys. Lett. A 381 3732Google Scholar

    [14]

    Wang Y C, Wang F P, Li J, Liang S N, Zhou J H 2018 Energies 11 523Google Scholar

    [15]

    Smalo H S, Hestad Ø, Ingebrigtsen S, Åstrand P O 2011 J. Appl. Phys. 109 073306Google Scholar

    [16]

    Wang Y C, Wang F P, Li J, Huang Z Y, Liang S N, Zhou J H 2017 Energies 10 510Google Scholar

    [17]

    黄多辉, 王藩侯, 程晓洪, 万明杰 蒋刚 2011 物理学报 60 123101Google Scholar

    Huang D H, Wang P H, Cheng X H, Wang M J, Jiang G 2011 Acta Phys. Sin. 60 123101Google Scholar

    [18]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113201Google Scholar

    [19]

    曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101Google Scholar

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101Google Scholar

    [20]

    Xu G L, Xie H X, Wei Y, Zhang X Z Liu Y F 2012 Chin. Phys. B 21 153Google Scholar

    [21]

    Grozema F C, Telesca R, Jonkman H T, Siebbeles L, Snijders J G 2001 J. Chem. Phys. 115 10014Google Scholar

    [22]

    杜建宾, 武德起, 唐延林, 隆正文 2015 物理学报 64 073101Google Scholar

    Du J B, Wu D Q, Tang Y L, Long Z W 2015 Acta Phys. Sin. 64 073101Google Scholar

    [23]

    袁伟 2013 硕士学位论文 (新乡: 河南师范大学)

    Yuan W 2013 M. S. Thesis (Xinxiang: Henan Normal University) (in Chinese)

    [24]

    NIST Computational Chemistry Comparison and Benchmark Data Basehttp://cccbdb.nist.gov/vibscalejust.asp [2020-8-1]

    [25]

    NIST Standard Reference Database 69: Chemistry WebBook https://webbook.nist.gov/chemistry/ [2018-10-1]

    [26]

    凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠 2013 物理学报 62 223102Google Scholar

    Ling Z G, Tang Y L, Li T, Li Y P, Wei X N 2013 Acta Phys. Sin. 62 223102Google Scholar

    [27]

    李晓虎 2006 博士学位论文 (重庆: 重庆大学)

    Li X H 2006 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [28]

    李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平 秦水介 2015 物理学报 64 043101Google Scholar

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qing S J 2015 Acta Phys. Sin. 64 043101Google Scholar

    [29]

    Li J, Liu X Y, Zhu Z H, Sheng Y 2012 Chin. Phys. B 21 033101Google Scholar

    [30]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [31]

    Smalo H S, Astrand P O Ingebrigtsen S 2010 IEEE Trans. Dielectr. Electr. Insul. 17 733Google Scholar

    [32]

    Jadidian J, Zahn M, Lavesson N, Widlund O, Borg K 2012 IEEE Trans. Plasma Sci. 40 909Google Scholar

  • [1] Xing Feng-Zhu, Cui Jian-Po, Wang Yan-Zhao, Gu Jian-Zhong. Two-proton emission from excited states of proton-rich nuclei. Acta Physica Sinica, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [2] Li Ya-Sha, Xia Yu, Liu Shi-Chong, Qu Cong. Surface discharge of bulk materials investigated from change of charge trap characteristics of polyimide single molecular chain. Acta Physica Sinica, 2022, 71(5): 052101. doi: 10.7498/aps.71.20211611
    [3] Surface discharge of bulk materials from the change of charge trap characteristics of polyimide single molecular chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211611
    [4] Peng Jie, Zhang Si-Jie, Wang Ke, Dove Martin. Density functional theory calculation of spectrum and excitation properties of mer-Alq3. Acta Physica Sinica, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [5] Li Ya-Sha, Sun Lin-Xiang, Zhou Xiao, Chen Kai, Wang Hui-Yao. Structure and excitation characteristics of C5F10O under external electric field based on density functional theory. Acta Physica Sinica, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [6] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [7] Zhang Jin-Fang, Ren Ya-Na, Wang Jun-Min, Yang Bao-Dong. Investigation of the two-color polarization spectroscopy between the excited states based on cesium atoms. Acta Physica Sinica, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [8] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation. Acta Physica Sinica, 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [9] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [10] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties of twelve -S states and twenty-three states of the CF+ cation. Acta Physica Sinica, 2016, 65(3): 033102. doi: 10.7498/aps.65.033102
    [11] Zhao Cui-Lan, Wang Li-Li, Zhao Li-Li. Properties of excited state of polaron in quantum disk in finite depth parabolic potential well. Acta Physica Sinica, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [12] Cao Xin-Wei, Ren Yang, Liu Hui, Li Shu-Li. Molecular structure and excited states for BN under strong electric field. Acta Physica Sinica, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [13] Tian Yuan-Ye, Guo Fu-Ming, Zeng Si-Liang, Yang Yu-Jun. Investigation of photoionization of excited atom irradiated by the high-frequency intense laser. Acta Physica Sinica, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [14] Gao Shuang-Hong, Ren Zhao-Yu, Guo Ping, Zheng Ji-Ming, Du Gong-He, Wan Li-Juan, Zheng Lin-Lin. Magnetic properties and excited states of thegraphene quantum dots. Acta Physica Sinica, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [15] Jiao Yu-Qiu, Zhao Kun, Lu Gui-Wu. Density functional theory studies on spectral properties of H3PAuPh and (H3PAu)2(1,4-C6H4)2. Acta Physica Sinica, 2008, 57(3): 1592-1598. doi: 10.7498/aps.57.1592
    [16] Ma Jing, Ding Lei, Gu Xue-Jun, Zheng Hai-Yang, Fang Li, Zhang Wei-Jun, Huang Chao-Qun, Wei Li-Xia, Yang Bin, Qi Fei. Photoionization studies of C2Cl4 using synchrotron radiation. Acta Physica Sinica, 2006, 55(1): 137-141. doi: 10.7498/aps.55.137
    [17] Ma Jing, Ding Lei, Gu Xue-Jun, Fang Li, Zhang Wei-Jun, Wei Li-Xia, Wang Jing, Yang Bin, Huang Chao-Qun, Qi Fei. Vacuum ultraviolet photoionization and photodissociation of C2HCl3 by synchrotron radiation. Acta Physica Sinica, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [18] Mao Hua-Ping, Yang Lan-Rong, Wang Hong-Yan, Zhu Zheng-He, Tang Yong-Jian. Calculation of ionization potential and geometry of small yttrium metal clusters. Acta Physica Sinica, 2005, 54(11): 5126-5129. doi: 10.7498/aps.54.5126
    [19] Gu Bin, Jin Nian-Qing, Wang Zhi-Ping, Zeng Xiang-Hua. Calculation of the transition spectra of sodium atom via TDDFT. Acta Physica Sinica, 2005, 54(10): 4648-4653. doi: 10.7498/aps.54.4648
    [20] Hu Zheng-Fa, Wang Zhen-Ya, Kong Xiang-Lei, Zhang Xian-Yi, Li Hai-Yang, Zhou Shi-Kang, Wang Juan, Wu Guo-Hua, Sheng Liu-Si, Zhang Yun-Wu. . Acta Physica Sinica, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
Metrics
  • Abstract views:  3110
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  03 August 2021
  • Accepted Date:  21 August 2021
  • Available Online:  15 September 2021
  • Published Online:  05 December 2021

/

返回文章
返回