Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study of electron beam irradiation damage to ZnO and TiO2

Gao Xu-Dong Yang De-Cao Wei Wen-Jing Li Gong-Ping

Citation:

Simulation study of electron beam irradiation damage to ZnO and TiO2

Gao Xu-Dong, Yang De-Cao, Wei Wen-Jing, Li Gong-Ping
PDF
HTML
Get Citation
  • Wurtzite ZnO and rutile TiO2 have important application value in solar cells, photocatalysts, self-cleaning coatings, etc. In addition, ZnO and TiO2 are crucial basic materials for the development of semiconductor spintronics devices due to room temperature ferromagnetism in the state of defects or doped specific elements. Many studies indicate that the magnetic, optical, and electrical properties of ZnO and TiO2 are affected by intrinsic defects (such as vacancies, interstitial atoms, etc.). Electron irradiation has the incomparable advantages over other particle beam irradiation, the defects produced by electron beam irradiation are mainly independent vacancy-interstitial atom pairs (Frenkel pairs), and there are no new doping elements introduced into the material during the irradiation by electron beam with energy of several MeV, that is, electron irradiation is a relatively “pure” particle irradiation method. On the one hand, since the displacement threshold energy values of different atoms are different from each other, the type of defect during electron irradiation can be controlled by the energy of the electron beam. On the other hand, the electron fluence can determine the concentration of defects. Therefore, various defects of different concentrations can be generated by electron irradiation, thereby studying the influences of related defects on the magnetic, optical, and electrical properties of ZnO and TiO2. However, simulation calculations related to electron beam irradiation damage are relatively scarce. Therefore, in this work, the electron beam irradiation damage is taken as a research topic and the related theoretical simulation calculations are carried out, which lays a theoretical foundation for subsequent experimental researches. The size and the distribution of radiation damage (dpa) caused by point source electrons and that by plane source electrons with different energy values in ZnO and TiO2 are simulated and calculated through the MCNP5 program combined with the MCCM algorithm. The calculation results show that O atoms and Zn atoms can be dislocated when the electron energy values are greater than 0.31 MeV and 0.87 MeV in ZnO, respectively; while in TiO2, O atoms and Ti atoms can be dislocated when the electron beam energy values are greater than 0.12 MeV and 0.84 MeV, respectively. The dpa caused by point source electrons is mainly distributed in the longitudinal direction, and attenuates quickly in the lateral direction; on the contrary, the dpa caused by plane source electrons first increases and then decreases with the augment of the electron incidence depth, and the unevenness of the dpa distribution becomes more serious with the increase of the electron energy. Therefore, for each of ZnO and TiO2, the dpa will be relatively even distribution when the thickness of the sample is about 0.25 mm. Furthermore, the calculation results of the electron energy deposition show that the size of the energy deposition area is closely related to the electron beam energy. At the same time, with the increase of the electron beam energy, the position where the maximum energy deposition appears gradually moves to the inside of the sample, and the entire energy deposition area has a tendency to lean forward.
      Corresponding author: Li Gong-Ping, ligp@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975006, 11575074) .
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Furdyna J K 1988 J. Appl. Phys. 64 R29Google Scholar

    [3]

    Matsumoto Y, Takahashi R, Murakami M, Koida T, Fan X J, Hasegawa T, Fukumura T, Kawasaki M, Koshihara S Y, Koinuma H 2001 Jpn. J. Appl. Phys. 40 L1204Google Scholar

    [4]

    Xing G Z, Lu Y H, Tian Y F, Yi J B, Lim C C, Li Y F, Li G P, Wang D D, Yao B, Ding J, Feng Y P, Wu T 2011 AIP Advances 1 022152Google Scholar

    [5]

    Zhou S Q, Čižmár E, Potzger K, Krause M, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J, Schmidt H 2009 Phys. Rev. B 79 113201Google Scholar

    [6]

    Duhalde S, Vignolo M F, Golmar F, Chiliotte C, Torres C E R, Errico L A, Cabrera A F, Rentería M, Sánchez F H, Weissmann M 2005 Phys. Rev. B 72 161313Google Scholar

    [7]

    Olayinka A S, Adetunji B I, Idiodi J O A, Aghemelon U 2019 Int. J. Mod. Phys. B 33 1950036Google Scholar

    [8]

    Kernazhitsky L, Shymanovska V, Gavrilko T, Naumov V, Fedorenko L, Kshnyakin V, Baran J 2014 J. Lumin. 146 199Google Scholar

    [9]

    Liu B J, Liu K, Zhao J W, Wang W H, Ralchenko V, Geng F J, Yang L, Zhang S, Xue J J, Han J C 2020 Diamond Relat. Mater. 109 108026Google Scholar

    [10]

    Fujishima A, Zhang X T 2006 C. R. Chim. 9 750Google Scholar

    [11]

    Lin Q L, Xu N N, Li G P, Qian Z F, Liu H, Wang R H 2021 J. Mater. Chem. C 9 2858Google Scholar

    [12]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Lan C, Chen J S, Wang C L, Zhan X W, Zhang K 2020 RSC Adv. 10 18687Google Scholar

    [13]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Wang C L 2020 Opt. Mater. 101 109748Google Scholar

    [14]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Wang C L 2020 J. Supercond. Nov. Magn. 33 1535Google Scholar

    [15]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 物理学报 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [16]

    林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 物理学报 66 037101Google Scholar

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101Google Scholar

    [17]

    刘欢, 李公平, 许楠楠, 林俏露, 杨磊, 王苍龙 2016 物理学报 65 206102Google Scholar

    Liu H, Li G P, Xu N N, Lin Q L, Yang L, Wang C L 2016 Acta Phys. Sin. 65 206102Google Scholar

    [18]

    李天晶, 李公平, 马公俊平, 高行新 2011 物理学报 60 116102Google Scholar

    Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116102Google Scholar

    [19]

    Xu N N, Li G P, Pan X D, Wang Y B, Chen J S, Bao L M 2014 Chin. Phys. B 23 106101Google Scholar

    [20]

    Piñera I, Cruz C M, Van Espen P, Abreu Y, Leyva A 2012 Nucl. Instrum. Methods Phys. Res. , Sec. B 274 191Google Scholar

    [21]

    Cruz C M, Piñera I, Correa C, Abreu Y, Leyva A 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, 2011 p4622

    [22]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J 2018 Nat. Commun. 9 1Google Scholar

    [23]

    Edmondson P D, Weber W J, Namavar F, Zhang Y W 2012 J. Nucl. Mater. 422 86Google Scholar

    [24]

    Piñera I, Cruz C M, Abreu Y, Leyva A 2007 Phys. Status Solidi A 204 2279Google Scholar

    [25]

    Pinera I, Abreu Y, Van Espen P, Díaz A, Leyva A, Cruz C M 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, 2011 p1609

    [26]

    Oen O S, Holmes D K 1959 J. Appl. Phys. 30 1289Google Scholar

    [27]

    Cahn J H 1959 J. Appl. Phys. 30 1310Google Scholar

    [28]

    Bethe H A, Ashkin J 1953 Experimental Nuclear Physics (Vol. 1) (London: John Wiley & Sons, Iinc., New York Champan & Hall, Limited) pp252-256

    [29]

    Norgett M J, Robinson M T, Torrens I M 1975 Nucl. Eng. Des. 33 50Google Scholar

    [30]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J 2018 J. Nucl. Mater. 512 450Google Scholar

    [31]

    Kinchin G H, Pease R S 1955 J. Nucl. Energy (1954) 1 200Google Scholar

    [32]

    McKinley W A, Feshbach H 1948 Phys. Rev. 74 1759Google Scholar

    [33]

    Meese J M, Locker D R 1972 Solid State Commun. 11 1547Google Scholar

    [34]

    Zinkle S J, Kinoshita C 1997 J. Nucl. Mater. 251 200Google Scholar

    [35]

    Smith K L, Colella M 2003 J. Nucl. Mater. 321 19Google Scholar

    [36]

    Robinson M, Marks N A, Whittle K R, Lumpkin G R 2012 Phys. Rev. B 85 104105Google Scholar

    [37]

    Piñera I, Cruz C M, Leyva A, Abreu Y, Cabal A E, Van Espen P, Van Remortel N 2014 Nucl. Instrum. Methods Phys. Res. , Sec. B 339 1Google Scholar

  • 图 1  MCNP5采用程序模拟几何结构图 (a) 点源电子束; (b) 面源电子束

    Figure 1.  Schematic diagram of the geometry structure used by MCNP5 program: (a) Point source electron; (b) plane source electron.

    图 2  1.0 MeV的电子束在纤锌矿ZnO及金红石TiO2样品中的吸收曲线

    Figure 2.  Absorption curve of 1.0 MeV electron beam in wurtzite ZnO and rutile TiO2 sample.

    图 3  相对论性电子与静止原子的能量传递 (a) 64Zn; (b) 48Ti; (c) 16O

    Figure 3.  Energy transfer between relativistic electron and stationary atom: (a) 64Zn; (b) 48Ti; (c) 16O.

    图 4  离位损伤截面 (a) wurtzite ZnO; (b) rutile TiO2

    Figure 4.  Displacement cross section: (a) wurtzite ZnO; (b) rutile TiO2.

    图 5  点源电子束在纤锌矿ZnO中产生的dpa的分布 (a) 0.5 MeV; (b) 0.8 MeV; (c) 1.0 MeV; (d) 1.5 MeV

    Figure 5.  Distribution of dpa produced by Point Source Electron in wurtzite ZnO: (a) 0.5 MeV; (b) 0.8 MeV; (c) 1.0 MeV; (d) 1.5 MeV.

    图 6  1.0 MeV电子辐照金红石TiO2时dpa的分布

    Figure 6.  Distribution of dpa produced by 1.0 MeV electron in rutile TiO2.

    图 7  dpa随电子入射深度的变化曲线 (a) Wurtzite ZnO; (b) rutile TiO2

    Figure 7.  The variation curve of dpa with electron incidence depth: (a) Wurtzite ZnO; (b) rutile TiO2.

    图 8  dpamax与电子能量的关系曲线 (a) Wurtzite ZnO; (b) rutile TiO2

    Figure 8.  Relationship between dpamax and electron energy: (a) Wurtzite ZnO; (b) rutile TiO2.

    图 9  不同能量的理想点入射电子在纤锌矿ZnO中的能量沉积的分布

    Figure 9.  Distribution of energy deposition of ideal point source electrons with different energies in wurtzite ZnO.

    图 10  不同能量的面源电子束在纤锌矿ZnO中的能量沉积的分布

    Figure 10.  Distribution of energy deposition of plane source electrons with different energies in wurtzite ZnO.

    表 1  纤锌矿ZnO及金红石TiO2材料的平均激发势和离位阈能

    Table 1.  Average excitation potential and threshold energy of wurtzite ZnO and rutile TiO2.

    I /eVatomsTd /eV
    ZnO286.1Zn50[33]
    O55[33]
    TiO2179.5Ti69[36]
    O19[36]
    DownLoad: CSV
  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Furdyna J K 1988 J. Appl. Phys. 64 R29Google Scholar

    [3]

    Matsumoto Y, Takahashi R, Murakami M, Koida T, Fan X J, Hasegawa T, Fukumura T, Kawasaki M, Koshihara S Y, Koinuma H 2001 Jpn. J. Appl. Phys. 40 L1204Google Scholar

    [4]

    Xing G Z, Lu Y H, Tian Y F, Yi J B, Lim C C, Li Y F, Li G P, Wang D D, Yao B, Ding J, Feng Y P, Wu T 2011 AIP Advances 1 022152Google Scholar

    [5]

    Zhou S Q, Čižmár E, Potzger K, Krause M, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J, Schmidt H 2009 Phys. Rev. B 79 113201Google Scholar

    [6]

    Duhalde S, Vignolo M F, Golmar F, Chiliotte C, Torres C E R, Errico L A, Cabrera A F, Rentería M, Sánchez F H, Weissmann M 2005 Phys. Rev. B 72 161313Google Scholar

    [7]

    Olayinka A S, Adetunji B I, Idiodi J O A, Aghemelon U 2019 Int. J. Mod. Phys. B 33 1950036Google Scholar

    [8]

    Kernazhitsky L, Shymanovska V, Gavrilko T, Naumov V, Fedorenko L, Kshnyakin V, Baran J 2014 J. Lumin. 146 199Google Scholar

    [9]

    Liu B J, Liu K, Zhao J W, Wang W H, Ralchenko V, Geng F J, Yang L, Zhang S, Xue J J, Han J C 2020 Diamond Relat. Mater. 109 108026Google Scholar

    [10]

    Fujishima A, Zhang X T 2006 C. R. Chim. 9 750Google Scholar

    [11]

    Lin Q L, Xu N N, Li G P, Qian Z F, Liu H, Wang R H 2021 J. Mater. Chem. C 9 2858Google Scholar

    [12]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Lan C, Chen J S, Wang C L, Zhan X W, Zhang K 2020 RSC Adv. 10 18687Google Scholar

    [13]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Wang C L 2020 Opt. Mater. 101 109748Google Scholar

    [14]

    Liu H, Li G P, E D J, Xu N N, Lin Q L, Gao X D, Wang C L 2020 J. Supercond. Nov. Magn. 33 1535Google Scholar

    [15]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 物理学报 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [16]

    林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 物理学报 66 037101Google Scholar

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101Google Scholar

    [17]

    刘欢, 李公平, 许楠楠, 林俏露, 杨磊, 王苍龙 2016 物理学报 65 206102Google Scholar

    Liu H, Li G P, Xu N N, Lin Q L, Yang L, Wang C L 2016 Acta Phys. Sin. 65 206102Google Scholar

    [18]

    李天晶, 李公平, 马公俊平, 高行新 2011 物理学报 60 116102Google Scholar

    Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116102Google Scholar

    [19]

    Xu N N, Li G P, Pan X D, Wang Y B, Chen J S, Bao L M 2014 Chin. Phys. B 23 106101Google Scholar

    [20]

    Piñera I, Cruz C M, Van Espen P, Abreu Y, Leyva A 2012 Nucl. Instrum. Methods Phys. Res. , Sec. B 274 191Google Scholar

    [21]

    Cruz C M, Piñera I, Correa C, Abreu Y, Leyva A 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, 2011 p4622

    [22]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J 2018 Nat. Commun. 9 1Google Scholar

    [23]

    Edmondson P D, Weber W J, Namavar F, Zhang Y W 2012 J. Nucl. Mater. 422 86Google Scholar

    [24]

    Piñera I, Cruz C M, Abreu Y, Leyva A 2007 Phys. Status Solidi A 204 2279Google Scholar

    [25]

    Pinera I, Abreu Y, Van Espen P, Díaz A, Leyva A, Cruz C M 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, 2011 p1609

    [26]

    Oen O S, Holmes D K 1959 J. Appl. Phys. 30 1289Google Scholar

    [27]

    Cahn J H 1959 J. Appl. Phys. 30 1310Google Scholar

    [28]

    Bethe H A, Ashkin J 1953 Experimental Nuclear Physics (Vol. 1) (London: John Wiley & Sons, Iinc., New York Champan & Hall, Limited) pp252-256

    [29]

    Norgett M J, Robinson M T, Torrens I M 1975 Nucl. Eng. Des. 33 50Google Scholar

    [30]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J 2018 J. Nucl. Mater. 512 450Google Scholar

    [31]

    Kinchin G H, Pease R S 1955 J. Nucl. Energy (1954) 1 200Google Scholar

    [32]

    McKinley W A, Feshbach H 1948 Phys. Rev. 74 1759Google Scholar

    [33]

    Meese J M, Locker D R 1972 Solid State Commun. 11 1547Google Scholar

    [34]

    Zinkle S J, Kinoshita C 1997 J. Nucl. Mater. 251 200Google Scholar

    [35]

    Smith K L, Colella M 2003 J. Nucl. Mater. 321 19Google Scholar

    [36]

    Robinson M, Marks N A, Whittle K R, Lumpkin G R 2012 Phys. Rev. B 85 104105Google Scholar

    [37]

    Piñera I, Cruz C M, Leyva A, Abreu Y, Cabal A E, Van Espen P, Van Remortel N 2014 Nucl. Instrum. Methods Phys. Res. , Sec. B 339 1Google Scholar

  • [1] Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao. Effects of defects on electrical transport properties of anatase TiO2 polycrystalline under high pressure: AC impedance measurement. Acta Physica Sinica, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [2] Li Peng-Cheng, Tang Chong-Yang, Cheng Liang, Hu Yong-Ming, Xiao Xiang-Heng, Chen Wan-Ping. Reduction of CO2 by TiO2 nanoparticles through friction in water. Acta Physica Sinica, 2021, 70(21): 214601. doi: 10.7498/aps.70.20210210
    [3] Wang Shao-Xia, Zhao Xu-Cai, Pan Duo-Qiao, Pang Guo-Wang, Liu Chen-Xi, Shi Lei-Qian, Liu Gui-An, Lei Bo-Cheng, Huang Yi-Neng, Zhang Li-Li. First principle study of influence of transition metal (Cr, Mn, Fe, Co) doping on magnetism of TiO2. Acta Physica Sinica, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [4] Wang Chun-Jie, Wang Yue, Gao Chun-Xiao. Grain boundary electrical characteristics for rutile TiO2 under pressure. Acta Physica Sinica, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [5] Zhang Li-Li,  Xia Tong,  Liu Gui-An,  Lei Bo-Cheng,  Zhao Xu-Cai,  Wang Shao-Xia,  Huang Yi-Neng. Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles. Acta Physica Sinica, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [6] Xu Jia-Nan, Chen Huan-Ming, Pan Feng-Chun, Lin Xue-Ling, Ma Zhi, Chen Zhi-Peng. Electronic structures and ferroelectric properties of Ba-doped ZnO. Acta Physica Sinica, 2018, 67(10): 107701. doi: 10.7498/aps.67.20172263
    [7] Zhu Hui-Qun, Li Yi, Ye Wei-Jie, Li Chun-Bo. Thermochromic properties of W-doped VO2/ZnO nanocomposite films with flower structures. Acta Physica Sinica, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [8] Li Ming-Jie, Gao Hong, Li Jiang-Lu, Wen Jing, Li Kai, Zhang Wei-Guang. Electrical properties of single ZnO nanobelt in low temperature. Acta Physica Sinica, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [9] Liu Wei-Jie, Sun Zheng-Hao, Huang Yu-Xin, Leng Jing, Cui Hai-Ning. Electronic structures and optical properties of rare earth element (Yb) with different valences doped in ZnO. Acta Physica Sinica, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [10] Qi Ning, Wang Yuan-Wei, Wang Dong, Wang Dan-Dan, Chen Zhi-Quan. Positron annihilation study of the microstructure of Co doped ZnO nanocrystals. Acta Physica Sinica, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [11] Li Yi, Zhu Hui-Qun, Zhou Sheng, Huang Yi-Ze, Tong Guo-Xiang, Sun Ruo-Xi, Zhang Yu-Ming, Zheng Qiu-Xin, Li Liu, Shen Yu-Jian, Fang Bao-Ying. Study on thermochromic properties of VO2/ZnO nanocrystalline composite films. Acta Physica Sinica, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [12] Zhang Fu-Chun, Zhang Wei-Hu, Dong Jun-Tang, Zhang Zhi-Yong. Electronic structure and magnetism of Cr-doped ZnO nanowires. Acta Physica Sinica, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [13] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [14] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [15] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [16] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [17] Yang Chun, Li Yan-Rong, Yan Qi-Li, Liu Yong-Hua. Effects of atomic defects of α-Al2O3(0001) on ZnO adsorption. Acta Physica Sinica, 2005, 54(5): 2364-2368. doi: 10.7498/aps.54.2364
    [18] Yang Chun, Yu Yi, Li Yan-Rong, Liu Yong-Hua. Temperature effect on the adsorption, diffusion and initial growth mode of ZnO/Al2O3(0001) from first principles. Acta Physica Sinica, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [19] Yuan Hong-Tao, Zhang Yao, Gu Jing-Hua. A study on the in-situ growth of highly oriented ZnO whisker. Acta Physica Sinica, 2004, 53(2): 646-650. doi: 10.7498/aps.53.646
    [20] Guo Zeng-Bao. . Acta Physica Sinica, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
Metrics
  • Abstract views:  4492
  • PDF Downloads:  173
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2021
  • Accepted Date:  02 August 2021
  • Available Online:  17 August 2021
  • Published Online:  05 December 2021

/

返回文章
返回