搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究

朱慧群 李毅 叶伟杰 李春波

花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究

朱慧群, 李毅, 叶伟杰, 李春波
PDF
导出引用
导出核心图
  • 为解决掺杂引起的二氧化钒薄膜的红外调制幅度下降以及二氧化钒复合薄膜相变温度需要进一步降低等问题, 采用纳米结构、掺杂改性和复合结构等多种机理协同作用的方案, 利用共溅射氧化法, 先在石英玻璃上制备高(002)取向的ZnO薄膜, 再在ZnO层上室温共溅射沉积钒钨金属薄膜, 最后经热氧化处理获得双层钨掺杂W-VO2/ZnO纳米复合薄膜. 利用X射线衍射、X射线光电子能谱、扫描电镜和变温光谱分析等对薄膜的结构、组分、形貌和光学特性进行了分析. 结果显示, W-VO2/ZnO 纳米复合薄膜呈花状结构, 取向性提高, 在保持掺杂薄膜相变温度(约39 ℃)和热滞回线宽度(约6 ℃)较低的情况下, 其相变前后的红外透过率差量增加近2倍, 热致变色性能得到协同增强.
    • 基金项目: 国家高技术研究发展计划(批准号:2006AA03Z348)、广东省自然科学基金(批准号:10152902001000025)、广东高校省级重点平台和重大科研项目特色创新项目(批准号:2014)、广东省大学生创新创业训练计划(批准号:教发[2012]62)和江门市产业技术研究与开发项目(批准号:江财工[2012]156)资助的课题.
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Gao Y F, Luo H J, Zhang Z T 2012 Nano Energy 1 221

    [3]

    Granqvist C G, Lansaker P C, Mlyuka N R 2009 Sol. Energy Mater. Sol. Cells 93 2032

    [4]

    Zhu N W, Hu M, Xia X X, Wei X Y, Liang J R 2014 Chin. Phys. B 23 048108

    [5]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [6]

    Joyeeta N, Haglund Jr R F 2008 J. Phys.: Condens. Matter 20 264016

    [7]

    Saeli M, Binions R, Piccirillo C 2009 Appl. Surf. Sci. 255 7291

    [8]

    Kyoung J, Seo M, Park H, Koo S, Kim H, Park Y, Kim B J, Ahn K, Park N, Kim H, Kim D S 2010 Opt. Express 18 16452

    [9]

    Peng Z F, Wang Y, Du Y Y, Lu D, Sun D Z 2009 J. Alloys Compd. 480 537

    [10]

    Li J, Liu C Y, Mao L J 2009 J. Solid State Chem. 182 2835

    [11]

    Wang Y L, Chen X K, Li M C 2007 Surf. Coat. Technol. 201 5344

    [12]

    Zhou S, Li Y, Zhu H Q, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2012 Surf. Coat. Technol. 206 2922

    [13]

    Shi J Q, Zhou S X, You B, Wu L M 2007 Sol. Energy Mater. Sol. Cells 91 1856

    [14]

    Zhu H Q, Li Y, Zhou S, Huang Y Z, Tong G X, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2011 Acta Phys. Sin. 60 098104 (in Chinese) [朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英 2011 物理学报 60 098104]

    [15]

    Kiri P, Warwick M E A, Ridley I, Binions R 2011 Thin Solid Films 520 1363

    [16]

    Yan J Z, Zhang Y, Liu Y S, Zhang Y B, Huang W X, Tu M J 2008 Rare Metal Mater. Eng. 37 1648 (in Chinese) [颜家振, 张月, 刘阳思, 张玉波, 黄婉霞, 涂铭旌 2008 稀有金属材料与工程 37 1648]

    [17]

    Wang L X, Li J P, He X L, Gao X G 2006 Acta Phys. Sin. 55 2846 (in Chinese) [王利霞, 李建平, 何秀丽, 高晓光 2006 物理学报 55 2846]

    [18]

    Xu X, Yin A Y, Du X L 2010 Appl. Surf. Sci. 256 2750

    [19]

    Zhu H Q, Li Y, Guo G X, Fang B Y, Wang X H 2013 Adv. Mater. -Rapid Commun. 7 1015

    [20]

    Case F C 1987 Appl. Opt. 26 1550

    [21]

    Yan J Z, Zhang Y, Huang W X, Tu M J 2008 Thin Solid Films 516 8554

    [22]

    He Q, Xu X D, Wen Y J, Jiang Y D, Ao T H, Fan T J, Huang L, Ma C Q, Sun Z Q 2013 Acta Phys. Sin. 62 056802 (in Chinese) [何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强 2013 物理学报 62 056802]

    [23]

    Pauli S A, Herger R, Willmott P R, Donev E U, Suh J Y, Haglund Jr R F 2007 J. Appl. Phys. 102 073527

    [24]

    Lopez R, Feldman L C 2004 Phys. Rev. Lett. 93 177403

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Gao Y F, Luo H J, Zhang Z T 2012 Nano Energy 1 221

    [3]

    Granqvist C G, Lansaker P C, Mlyuka N R 2009 Sol. Energy Mater. Sol. Cells 93 2032

    [4]

    Zhu N W, Hu M, Xia X X, Wei X Y, Liang J R 2014 Chin. Phys. B 23 048108

    [5]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [6]

    Joyeeta N, Haglund Jr R F 2008 J. Phys.: Condens. Matter 20 264016

    [7]

    Saeli M, Binions R, Piccirillo C 2009 Appl. Surf. Sci. 255 7291

    [8]

    Kyoung J, Seo M, Park H, Koo S, Kim H, Park Y, Kim B J, Ahn K, Park N, Kim H, Kim D S 2010 Opt. Express 18 16452

    [9]

    Peng Z F, Wang Y, Du Y Y, Lu D, Sun D Z 2009 J. Alloys Compd. 480 537

    [10]

    Li J, Liu C Y, Mao L J 2009 J. Solid State Chem. 182 2835

    [11]

    Wang Y L, Chen X K, Li M C 2007 Surf. Coat. Technol. 201 5344

    [12]

    Zhou S, Li Y, Zhu H Q, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2012 Surf. Coat. Technol. 206 2922

    [13]

    Shi J Q, Zhou S X, You B, Wu L M 2007 Sol. Energy Mater. Sol. Cells 91 1856

    [14]

    Zhu H Q, Li Y, Zhou S, Huang Y Z, Tong G X, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2011 Acta Phys. Sin. 60 098104 (in Chinese) [朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英 2011 物理学报 60 098104]

    [15]

    Kiri P, Warwick M E A, Ridley I, Binions R 2011 Thin Solid Films 520 1363

    [16]

    Yan J Z, Zhang Y, Liu Y S, Zhang Y B, Huang W X, Tu M J 2008 Rare Metal Mater. Eng. 37 1648 (in Chinese) [颜家振, 张月, 刘阳思, 张玉波, 黄婉霞, 涂铭旌 2008 稀有金属材料与工程 37 1648]

    [17]

    Wang L X, Li J P, He X L, Gao X G 2006 Acta Phys. Sin. 55 2846 (in Chinese) [王利霞, 李建平, 何秀丽, 高晓光 2006 物理学报 55 2846]

    [18]

    Xu X, Yin A Y, Du X L 2010 Appl. Surf. Sci. 256 2750

    [19]

    Zhu H Q, Li Y, Guo G X, Fang B Y, Wang X H 2013 Adv. Mater. -Rapid Commun. 7 1015

    [20]

    Case F C 1987 Appl. Opt. 26 1550

    [21]

    Yan J Z, Zhang Y, Huang W X, Tu M J 2008 Thin Solid Films 516 8554

    [22]

    He Q, Xu X D, Wen Y J, Jiang Y D, Ao T H, Fan T J, Huang L, Ma C Q, Sun Z Q 2013 Acta Phys. Sin. 62 056802 (in Chinese) [何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强 2013 物理学报 62 056802]

    [23]

    Pauli S A, Herger R, Willmott P R, Donev E U, Suh J Y, Haglund Jr R F 2007 J. Appl. Phys. 102 073527

    [24]

    Lopez R, Feldman L C 2004 Phys. Rev. Lett. 93 177403

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1697
  • PDF下载量:  950
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-19
  • 修回日期:  2014-07-22
  • 刊出日期:  2014-12-05

花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究

  • 1. 五邑大学应用物理与材料学院, 江门 529020;
  • 2. 上海理工大学光电信息与计算机工程学院, 上海 200093
    基金项目: 

    国家高技术研究发展计划(批准号:2006AA03Z348)、广东省自然科学基金(批准号:10152902001000025)、广东高校省级重点平台和重大科研项目特色创新项目(批准号:2014)、广东省大学生创新创业训练计划(批准号:教发[2012]62)和江门市产业技术研究与开发项目(批准号:江财工[2012]156)资助的课题.

摘要: 为解决掺杂引起的二氧化钒薄膜的红外调制幅度下降以及二氧化钒复合薄膜相变温度需要进一步降低等问题, 采用纳米结构、掺杂改性和复合结构等多种机理协同作用的方案, 利用共溅射氧化法, 先在石英玻璃上制备高(002)取向的ZnO薄膜, 再在ZnO层上室温共溅射沉积钒钨金属薄膜, 最后经热氧化处理获得双层钨掺杂W-VO2/ZnO纳米复合薄膜. 利用X射线衍射、X射线光电子能谱、扫描电镜和变温光谱分析等对薄膜的结构、组分、形貌和光学特性进行了分析. 结果显示, W-VO2/ZnO 纳米复合薄膜呈花状结构, 取向性提高, 在保持掺杂薄膜相变温度(约39 ℃)和热滞回线宽度(约6 ℃)较低的情况下, 其相变前后的红外透过率差量增加近2倍, 热致变色性能得到协同增强.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回