Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface discharge of bulk materials investigated from change of charge trap characteristics of polyimide single molecular chain

Li Ya-Sha Xia Yu Liu Shi-Chong Qu Cong

Citation:

Surface discharge of bulk materials investigated from change of charge trap characteristics of polyimide single molecular chain

Li Ya-Sha, Xia Yu, Liu Shi-Chong, Qu Cong
PDF
HTML
Get Citation
  • Surface discharge is one of the reasons for insulation failure. Polyimide (PI) is used in gas-solid insulation of high-frequency electric power equipment. Therefore, based on density functional theory, the effects of single molecular chain structure, energy level, density of states, electrostatic potential, excited state and other micro parameters under external electric field on trap formation and surface discharge of both PI and polar- group- OHaffected PI are discussed from the atomic and molecular level. The results show that the structure of PI is crimped and the dipole moment increases under external electric field, which is easy to accumulate charges to form space charge center, especially after the introduction of polar group OH. In the PI molecules, hole traps are formed in the benzene ring region, and electron traps are formed in the imide ring region. The number of electron trap energy levels is large, in which the space charge trap depth gradually deepens with the increase of external electric field. After the introduction of polar group OH, the excitation energy of PI molecules decreases, which makes the electrons inside the molecules excited easily. The spatial separation of electrons and holes decreases with the increase of electric field, which is conducive to the recombination of holes and electrons to emit photons.
      Corresponding author: Xia Yu, 1106283537@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577105).
    [1]

    黄旭炜, 刘涛, 舒想, 李庆民, 王忠东 2020 高电压技术 46 215Google Scholar

    Huang X W, Liu T, Shu X, Li Q M, Wang Z D 2020 High Voltage Eng. 46 215Google Scholar

    [2]

    胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar

    Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power System Technology 44 1276Google Scholar

    [3]

    董国静, 刘涛, 李庆民 2020 电工技术学报 35 2006Google Scholar

    Dong G J, Liu T, Li Q M 2020 Trans. China Electrotechnical. Soc. 35 2006Google Scholar

    [4]

    刘涛, 韩帅, 李庆民, 鲁旭, 黄旭炜 2016 电工技术学报 31 199Google Scholar

    Liu T, Han S, Li Q M, Lu X, Huang X W 2016 Trans. China Electrotechnical. Soc. 31 199Google Scholar

    [5]

    张开放, 张黎, 李宗蔚, 赵彤, 邹亮 2019 电工技术学报 34 3275Google Scholar

    Zhang K F, Zhang L, Li Z W, Zhao T, Zhou L 2019 Trans. China Electrotechnical. Soc. 34 3275Google Scholar

    [6]

    罗杨, 吴广宁, 刘继午, 曹开江, 彭佳, 张依强, 朱光亚 2013 中国电机工程学报 33 187Google Scholar

    Luo Y, Wu G Y, Liu J W, Cao K J, Peng J, Zhang Y Q, Zhu G Y 2013 Chin. Soc. Elec. Eng. 33 187Google Scholar

    [7]

    赵义焜, 张国强, 韩冬, 杨富尧, 刘洋 2019 电工技术学报 34 3464Google Scholar

    Zhao Y K, Zhang G Q, Han D, Yang F Y, Liu Y 2019 Trans. China Electrotechnical. Soc. 34 3464Google Scholar

    [8]

    田付强, 彭潇 2017 电工技术学报 32 3Google Scholar

    Tian F Q, Peng X 2017 Trans. China Electrotechnical. Soc. 32 3Google Scholar

    [9]

    汪佛池, 律方成, 徐志钮, 张沛红 2007 高电压技术 33 30Google Scholar

    Wang F C, Lu F C, Xu Z N, Zhang P H 2007 High Voltage Eng. 33 30Google Scholar

    [10]

    刘涛, 董国静, 李庆民, 任瀚文, 王健, 王忠东 2020 高电压技术 46 2504Google Scholar

    Liu T, Dong G J, Li Q M, Ren H W, Wang J, Wang Z D 2020 High Voltage Eng. 46 2504Google Scholar

    [11]

    Boufayed F, Teyssedre G, Laurent C, Roy Le S, Dissado L A, Ségur P, Montanari G C 2006 J. Appl. Phys. 100 104Google Scholar

    [12]

    罗杨, 吴广宁, 曹开江, 辛正亮, 张依强, 徐慧慧 2012 高电压技术 38 2707Google Scholar

    Luo Y, Wu G Y, Cao K J, Xin Z L, Zhang Y Q, Xu H H 2012 High Voltage Eng. 38 2707Google Scholar

    [13]

    鲁旭, 韩帅, 李庆民, 黄旭炜, 王学磊, 王高勇 2016 电工技术学报 31 14Google Scholar

    Lu X, Han S, Li Q M, Huang X W, Wang X L, Wang G Y 2016 Trans. China Electrotechnical. Soc. 31 14Google Scholar

    [14]

    Sarathi R, Thangabalan B, Harid N, Griffiths H 2020 IET Nanodielectrics 3 44

    [15]

    李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar

    Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar

    [16]

    李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀 2020 物理学报 69 013101Google Scholar

    Li Y S, Sun L X, Zhou X, Chen K, Wang H Y 2020 Acta Phys. Sin. 69 013101Google Scholar

    [17]

    李进, 赵仁勇, 杜伯学, 苏金刚, 韩晨磊, 高田达雄 2020 高电压技术 46 772Google Scholar

    Li J, Zhao R Y, Du B X, Su J G, Han C L, Takada T 2020 High Voltage Eng. 46 772Google Scholar

    [18]

    Frish M J, Trucks G W, Schlegal H B 2010 Gaussian 09 (Revision B01) (Walling ford: Gaussian Inc. )

    [19]

    梅金硕, 杨红军, 殷景华, 雷清泉 2006 哈尔滨理工大学学报 11 50Google Scholar

    Mei J S, Yang H J, Yin J H, Lei Q Q 2006 Journal of Harbin University of Science and Technology 11 50Google Scholar

    [20]

    吴旭辉, 吴广宁, 杨雁, 张兴涛, 雷毅鑫, 钟鑫, 朱健 2018 中国电机工程学报 38 3410Google Scholar

    Wu X H, Wu G N, Yang Y, Zhang X T, Lei Y X, Zhong X, Zhu J 2018 Chin. Soc. Elec. Eng. 38 3410Google Scholar

    [21]

    李欢, 徐磊, 刘涛, 杨章勇 2021 电力工程技术 5 54Google Scholar

    Li H, Xu L, Liu T, Yang Z Y 2021 Electric Power Eng. Technology 5 54Google Scholar

    [22]

    张兴涛, 吴广宁, 杨雁, 吴旭辉, 雷毅鑫, 钟鑫 2018 高电压技术 44 3097Google Scholar

    Zhang X T, Wu G N, Yang Y, Wu X H, Lei Y X, Zhong X 2018 High Voltage Eng. 44 3097Google Scholar

    [23]

    Lu T, Chen F W 2012 J. Mol. Graph Model. 38 31Google Scholar

    [24]

    LU T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [25]

    查俊伟, 田娅娅, 刘雪洁, 董晓迪, 郑明胜 2021 高电压技术 47 1759Google Scholar

    Cha J W, Tian Y Y, Liu X J, Dong X D 2021 High Voltage Eng. 47 1759Google Scholar

    [26]

    廖瑞金, 陆云才, 杨丽君, 李剑, 孙才新 2006 绝缘材料 39 51Google Scholar

    Liao R J, Lu Y C, Yang L J, Li J, Sun C X 2006 Insulating Materials 39 51Google Scholar

    [27]

    林家齐, 李兰地, 何霞霞, 杨文龙, 迟庆国, 张昌海, 谢志滨, 雷清泉 2017 电机与控制学报 21 89

    Lin J Q, Li L D, He X X, Yang W L, Chi Q G, Zhang C H, Xie Z B, Lei Q Q 2017 Electric Machines and Control 21 89

    [28]

    李盛涛, 黄奇峰, 孙健, 张拓, 李建英 2010 物理学报 59 422Google Scholar

    Li S T, Huang Q F, Sun J, Zhang T, Li J Y 2010 Acta Phys. Sin. 59 422Google Scholar

    [29]

    黄炳融, 王威望, 李盛涛, 李欣原, 蒋起航, 聂永杰, 邓云坤 2021 电气工程学报 16 25Google Scholar

    Huang B R, Wang W W, Li S T, Li X Y, Jiang Q H, Nie Y J, Deng Y K 2021 J. Electrical Eng. 16 25Google Scholar

    [30]

    罗龙波, 叶信合, 易江, 李科, 刘向阳 2021 高分子学报 52 363Google Scholar

    Luo L B, Ye X H, Yi J, Li K, Liu X Y 2021 Acta Polymerica Sinica 52 363Google Scholar

  • 图 1  PI分子结构式

    Figure 1.  Molecular formula of PI.

    图 2  分子优化模型 (a) PI分子单链; (b) PI-OH分子单链

    Figure 2.  Molecular optimization model: (a) PI molecular single chain; (b) Pi-OH molecular single chain.

    图 3  分子偶极矩的变化

    Figure 3.  Changes of molecular dipole moments.

    图 4  轨道云图与能级分布图

    Figure 4.  Orbital cloud diagram and energy level distribution diagram.

    图 5  不同电场下分子态密度图 (a) PI分子; (b) PI-OH分子

    Figure 5.  Molecular density of states under different electric fields: (a) Pi molecule; (b) PI-OH molecule.

    图 6  分子表面静电势 (a) PI分子; (b) PI-OH分子

    Figure 6.  Molecular surface electrostatic potential: (a) PI molecule; (b) PI-OH molecule.

    图 7  PI单链分子的轨道跃迁 (a) F=0 a.u.; (b) F = 0.010 a.u.

    Figure 7.  Orbital transition of PI single molecule: (a) F = 0 a.u.; (b) F = 0.010 a.u..

    表 1  聚酰亚胺片断部分键长与键角

    Table 1.  Partial bond length and bond angle of polyimide fragments.

    NR(13, 14)/nmR(9, 10)/nmR(7, 9)/nmA(13, 14, 15)/(°)A(9, 7, 8)/(°)A(4, 5, 6)/(°)
    N = 11.3911.4221.422121.041126.108114.756
    N = 21.3891.4231.422121.099126.045114.894
    N = 31.3891.4211.422121.115126.011114.883
    DownLoad: CSV

    表 2  不同外电场下分子的几何结构

    Table 2.  Molecular geometry under different external electric fields.

    F/a.u.PI PI-OH
    R(50, 55)/nmA(63, 70, 71)/(°)R(46, 51)/nmA(59, 66, 67)/(°)
    01.411121.099 1.420121.162
    0.0011.411121.3301.420121.145
    0.0021.423121.4721.421121.117
    0.0031.424121.5011.426120.049
    0.0041.425121.5341.426119.595
    0.0051.426121.5801.427118.302
    0.0061.428121.6691.428117.915
    0.0071.430121.7071.428116.818
    0.0081.433121.7611.429116.387
    0.0091.436121.7921.430116.008
    0.0101.440121.9171.432115.833
    DownLoad: CSV

    表 3  不同外电场下分子前线轨道能级的变化

    Table 3.  Changes of molecular frontier orbital energy levels under different external electric fields.

    F/a.uPIPI-OH
    EH/eVEL/eVEG/eVEH/eVEL/eVEG/eV
    0–7.661–2.7394.922–7.487–3.0184.469
    0.001–7.666–2.7654.901–7.451–3.0704.381
    0.002–7.674–2.7914.883–7.405–3.1024.303
    0.003–7.655–2.8104.845–7.326–3.1464.180
    0.004–7.638–2.8174.821–7.285–3.2524.033
    0.005–7.602–2.8364.766–7.039–3.4333.606
    0.006–7.564–2.8554.709–6.902–3.5463.356
    0.007–7.535–2.8714.664–6.645–3.7882.857
    0.008–7.502–2.8914.611–6.438–3.9382.500
    0.009–7.495–2.9144.581–6.259–4.0672.192
    0.010–7.499–2.9394.560–6.116–4.2021.914
    DownLoad: CSV

    表 4  电场下空间电荷陷阱深度的变化

    Table 4.  Changes of space charge trap depth under electric field.

    E/eVF/a.u.
    00.0010.0020.0030.0040.0050.0060.0070.0080.0090.010
    PIEEA(a)2.8342.7652.6792.5942.4982.3882.2642.1261.9741.8061.622
    EEA(b)2.7212.6392.2042.1161.8991.7011.5091.2791.0060.7180.408
    Etrap0.1130.1260.4750.4790.5990.6870.7550.8470.9681.0891.214
    PI-OHEEA(a)2.9652.8642.7762.6432.4882.3302.1271.9321.6871.1700.898
    EEA(b)2.6392.5032.2582.0081.7981.5711.3291.0630.7810.4820.164
    Etrap0.3260.3610.5180.6350.6910.7580.7990.8690.9060.6880.734
    DownLoad: CSV

    表 5  PI和PI-OH单链分子的前8个激发能

    Table 5.  Top 8 excitation energies of PI and PI-OH single molecules.

     Eex/eV
    N = 1N = 2N = 3N = 4N = 5N = 6N = 7N = 8
    PI3.3693.4763.7703.8133.8213.9123.9133.990
    PI-OH3.0913.3253.3813.7273.7303.8973.9423.951
    DownLoad: CSV

    表 6  激发态S(0)→S(1)的各类参数

    Table 6.  Various parameters of excited state S(0)→S(1).

    F/a.u.Sr/a.u.DtOrbital contribution(hole)Orbital contribution(electron)
    00.3833.9981.665MO 195-12.33% MO 197-76.94%MO 198-95.01%
    0.0100.4093.6281.234MO 197-77.56%MO198-94.7%
    注: MO代表分子轨道.
    DownLoad: CSV
  • [1]

    黄旭炜, 刘涛, 舒想, 李庆民, 王忠东 2020 高电压技术 46 215Google Scholar

    Huang X W, Liu T, Shu X, Li Q M, Wang Z D 2020 High Voltage Eng. 46 215Google Scholar

    [2]

    胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar

    Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power System Technology 44 1276Google Scholar

    [3]

    董国静, 刘涛, 李庆民 2020 电工技术学报 35 2006Google Scholar

    Dong G J, Liu T, Li Q M 2020 Trans. China Electrotechnical. Soc. 35 2006Google Scholar

    [4]

    刘涛, 韩帅, 李庆民, 鲁旭, 黄旭炜 2016 电工技术学报 31 199Google Scholar

    Liu T, Han S, Li Q M, Lu X, Huang X W 2016 Trans. China Electrotechnical. Soc. 31 199Google Scholar

    [5]

    张开放, 张黎, 李宗蔚, 赵彤, 邹亮 2019 电工技术学报 34 3275Google Scholar

    Zhang K F, Zhang L, Li Z W, Zhao T, Zhou L 2019 Trans. China Electrotechnical. Soc. 34 3275Google Scholar

    [6]

    罗杨, 吴广宁, 刘继午, 曹开江, 彭佳, 张依强, 朱光亚 2013 中国电机工程学报 33 187Google Scholar

    Luo Y, Wu G Y, Liu J W, Cao K J, Peng J, Zhang Y Q, Zhu G Y 2013 Chin. Soc. Elec. Eng. 33 187Google Scholar

    [7]

    赵义焜, 张国强, 韩冬, 杨富尧, 刘洋 2019 电工技术学报 34 3464Google Scholar

    Zhao Y K, Zhang G Q, Han D, Yang F Y, Liu Y 2019 Trans. China Electrotechnical. Soc. 34 3464Google Scholar

    [8]

    田付强, 彭潇 2017 电工技术学报 32 3Google Scholar

    Tian F Q, Peng X 2017 Trans. China Electrotechnical. Soc. 32 3Google Scholar

    [9]

    汪佛池, 律方成, 徐志钮, 张沛红 2007 高电压技术 33 30Google Scholar

    Wang F C, Lu F C, Xu Z N, Zhang P H 2007 High Voltage Eng. 33 30Google Scholar

    [10]

    刘涛, 董国静, 李庆民, 任瀚文, 王健, 王忠东 2020 高电压技术 46 2504Google Scholar

    Liu T, Dong G J, Li Q M, Ren H W, Wang J, Wang Z D 2020 High Voltage Eng. 46 2504Google Scholar

    [11]

    Boufayed F, Teyssedre G, Laurent C, Roy Le S, Dissado L A, Ségur P, Montanari G C 2006 J. Appl. Phys. 100 104Google Scholar

    [12]

    罗杨, 吴广宁, 曹开江, 辛正亮, 张依强, 徐慧慧 2012 高电压技术 38 2707Google Scholar

    Luo Y, Wu G Y, Cao K J, Xin Z L, Zhang Y Q, Xu H H 2012 High Voltage Eng. 38 2707Google Scholar

    [13]

    鲁旭, 韩帅, 李庆民, 黄旭炜, 王学磊, 王高勇 2016 电工技术学报 31 14Google Scholar

    Lu X, Han S, Li Q M, Huang X W, Wang X L, Wang G Y 2016 Trans. China Electrotechnical. Soc. 31 14Google Scholar

    [14]

    Sarathi R, Thangabalan B, Harid N, Griffiths H 2020 IET Nanodielectrics 3 44

    [15]

    李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar

    Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar

    [16]

    李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀 2020 物理学报 69 013101Google Scholar

    Li Y S, Sun L X, Zhou X, Chen K, Wang H Y 2020 Acta Phys. Sin. 69 013101Google Scholar

    [17]

    李进, 赵仁勇, 杜伯学, 苏金刚, 韩晨磊, 高田达雄 2020 高电压技术 46 772Google Scholar

    Li J, Zhao R Y, Du B X, Su J G, Han C L, Takada T 2020 High Voltage Eng. 46 772Google Scholar

    [18]

    Frish M J, Trucks G W, Schlegal H B 2010 Gaussian 09 (Revision B01) (Walling ford: Gaussian Inc. )

    [19]

    梅金硕, 杨红军, 殷景华, 雷清泉 2006 哈尔滨理工大学学报 11 50Google Scholar

    Mei J S, Yang H J, Yin J H, Lei Q Q 2006 Journal of Harbin University of Science and Technology 11 50Google Scholar

    [20]

    吴旭辉, 吴广宁, 杨雁, 张兴涛, 雷毅鑫, 钟鑫, 朱健 2018 中国电机工程学报 38 3410Google Scholar

    Wu X H, Wu G N, Yang Y, Zhang X T, Lei Y X, Zhong X, Zhu J 2018 Chin. Soc. Elec. Eng. 38 3410Google Scholar

    [21]

    李欢, 徐磊, 刘涛, 杨章勇 2021 电力工程技术 5 54Google Scholar

    Li H, Xu L, Liu T, Yang Z Y 2021 Electric Power Eng. Technology 5 54Google Scholar

    [22]

    张兴涛, 吴广宁, 杨雁, 吴旭辉, 雷毅鑫, 钟鑫 2018 高电压技术 44 3097Google Scholar

    Zhang X T, Wu G N, Yang Y, Wu X H, Lei Y X, Zhong X 2018 High Voltage Eng. 44 3097Google Scholar

    [23]

    Lu T, Chen F W 2012 J. Mol. Graph Model. 38 31Google Scholar

    [24]

    LU T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [25]

    查俊伟, 田娅娅, 刘雪洁, 董晓迪, 郑明胜 2021 高电压技术 47 1759Google Scholar

    Cha J W, Tian Y Y, Liu X J, Dong X D 2021 High Voltage Eng. 47 1759Google Scholar

    [26]

    廖瑞金, 陆云才, 杨丽君, 李剑, 孙才新 2006 绝缘材料 39 51Google Scholar

    Liao R J, Lu Y C, Yang L J, Li J, Sun C X 2006 Insulating Materials 39 51Google Scholar

    [27]

    林家齐, 李兰地, 何霞霞, 杨文龙, 迟庆国, 张昌海, 谢志滨, 雷清泉 2017 电机与控制学报 21 89

    Lin J Q, Li L D, He X X, Yang W L, Chi Q G, Zhang C H, Xie Z B, Lei Q Q 2017 Electric Machines and Control 21 89

    [28]

    李盛涛, 黄奇峰, 孙健, 张拓, 李建英 2010 物理学报 59 422Google Scholar

    Li S T, Huang Q F, Sun J, Zhang T, Li J Y 2010 Acta Phys. Sin. 59 422Google Scholar

    [29]

    黄炳融, 王威望, 李盛涛, 李欣原, 蒋起航, 聂永杰, 邓云坤 2021 电气工程学报 16 25Google Scholar

    Huang B R, Wang W W, Li S T, Li X Y, Jiang Q H, Nie Y J, Deng Y K 2021 J. Electrical Eng. 16 25Google Scholar

    [30]

    罗龙波, 叶信合, 易江, 李科, 刘向阳 2021 高分子学报 52 363Google Scholar

    Luo L B, Ye X H, Yi J, Li K, Liu X Y 2021 Acta Polymerica Sinica 52 363Google Scholar

  • [1] Xing Feng-Zhu, Cui Jian-Po, Wang Yan-Zhao, Gu Jian-Zhong. Two-proton emission from excited states of proton-rich nuclei. Acta Physica Sinica, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [2] Wang Ya-Chao, Lin Xiao-Ran, Wang Mei, Wang Ji-Fang, Chen Ling. Characteristics of saturated triglycerides under electric field. Acta Physica Sinica, 2021, 70(23): 233101. doi: 10.7498/aps.70.20211435
    [3] Surface discharge of bulk materials from the change of charge trap characteristics of polyimide single molecular chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211611
    [4] Peng Jie, Zhang Si-Jie, Wang Ke, Dove Martin. Density functional theory calculation of spectrum and excitation properties of mer-Alq3. Acta Physica Sinica, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [5] Li Ya-Sha, Sun Lin-Xiang, Zhou Xiao, Chen Kai, Wang Hui-Yao. Structure and excitation characteristics of C5F10O under external electric field based on density functional theory. Acta Physica Sinica, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [6] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [7] Zhang Jin-Fang, Ren Ya-Na, Wang Jun-Min, Yang Bao-Dong. Investigation of the two-color polarization spectroscopy between the excited states based on cesium atoms. Acta Physica Sinica, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [8] Nie Yong-Jie, Zhao Xian-Ping, Li Sheng-Tao. Influence of trap characteristics on DC surface flashover performance of low density polyethylene in vacuum. Acta Physica Sinica, 2019, 68(22): 227201. doi: 10.7498/aps.68.20190741
    [9] Yuan Duan-Lei, Min Dao-Min, Huang Yin, Xie Dong-Ri, Wang Hai-Yan, Yang Fang, Zhu Zhi-Hao, Fei Xiang, Li Sheng-Tao. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites. Acta Physica Sinica, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [10] Ma Chao, Min Dao-Min, Li Sheng-Tao, Zheng Xu, Li Xi-Yu, Min Chao, Zhan Hai-Xia. Trap distribution and direct current breakdown characteristics in polypropylene/Al2O3 nanodielectrics. Acta Physica Sinica, 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [11] Liu Xiao-Jun, Miao Feng-Juan, Li Rui, Zhang Cun-Hua, Li Qi-Nan, Yan Bing. Configuration interaction study on electronic structures and transitional properties of excited states of GeO molecule. Acta Physica Sinica, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [12] Zhao Cui-Lan, Wang Li-Li, Zhao Li-Li. Properties of excited state of polaron in quantum disk in finite depth parabolic potential well. Acta Physica Sinica, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [13] Cao Xin-Wei, Ren Yang, Liu Hui, Li Shu-Li. Molecular structure and excited states for BN under strong electric field. Acta Physica Sinica, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [14] Tian Yuan-Ye, Guo Fu-Ming, Zeng Si-Liang, Yang Yu-Jun. Investigation of photoionization of excited atom irradiated by the high-frequency intense laser. Acta Physica Sinica, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [15] Liao Rui-Jin, Zhou Tian-Chun, George Chen, Yang Li-Jun. A space charge trapping model and its parameters in polymeric material. Acta Physica Sinica, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [16] Gao Shuang-Hong, Ren Zhao-Yu, Guo Ping, Zheng Ji-Ming, Du Gong-He, Wan Li-Juan, Zheng Lin-Lin. Magnetic properties and excited states of thegraphene quantum dots. Acta Physica Sinica, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [17] Cai Shao-Hong, Zhou Ye-Hong. The excited states structure for chloroethylene under the external electric field. Acta Physica Sinica, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [18] Li Sheng-Tao, Huang Qi-Feng, Sun Jian, Zhang Tuo, Li Jian-Ying. Influence of aggregation structure and traps on surface flashover of XLPE in vacuum. Acta Physica Sinica, 2010, 59(1): 422-429. doi: 10.7498/aps.59.422
    [19] Jiao Yu-Qiu, Zhao Kun, Lu Gui-Wu. Density functional theory studies on spectral properties of H3PAuPh and (H3PAu)2(1,4-C6H4)2. Acta Physica Sinica, 2008, 57(3): 1592-1598. doi: 10.7498/aps.57.1592
    [20] Gu Bin, Jin Nian-Qing, Wang Zhi-Ping, Zeng Xiang-Hua. Calculation of the transition spectra of sodium atom via TDDFT. Acta Physica Sinica, 2005, 54(10): 4648-4653. doi: 10.7498/aps.54.4648
Metrics
  • Abstract views:  3309
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2021
  • Accepted Date:  14 October 2021
  • Available Online:  24 February 2022
  • Published Online:  05 March 2022

/

返回文章
返回