Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of multi-energy field electrodeposition on properties of Al2O3-Co composite films

Qi Yun-Kai Yang Shu-Min Li Xin Xu Qin Gu Jian-Jun

Citation:

Effects of multi-energy field electrodeposition on properties of Al2O3-Co composite films

Qi Yun-Kai, Yang Shu-Min, Li Xin, Xu Qin, Gu Jian-Jun
PDF
HTML
Get Citation
  • The multi-energy composite field micro-electrodeposition processing technology is used to prepare colorful structural coloration magnetic Al2O3-Co composite films each with a gradual microstructure. Under the action of the deposition electric field and the deflection electric field perpendicular to it, the microstructure, optical properties and magnetic properties of the composite films show gradual characteristics along the direction of the deflection electric field. By establishing an equivalent model of the microstructure, the mechanism of the microstructure change of the composite film is theoretically analyzed. Through software simulation, the distribution of Co ion deposition current density along the direction of the deflection electric field is quantitatively analyzed. The simulation results are consistent with the theoretical and experimental results. Through this study, we find that the micro-electrodeposition processing technology with using multi-energy field composite can control the micro-domain structure of the composite film from a microscopic point of view, and achieve the fine control of the magnetic and optical properties of the film micro-domain.
      Corresponding author: Gu Jian-Jun, jjungu@126.com
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant Nos. A2012101001, A2019202190) and the High-level TalentsFunded Projects of Hebei Province, China (Grant No. A2016002040).
    [1]

    Domagalski J T, Xifre-Perez E, Tabrizi M A, Ferre-Borrull J, Marsal L F 2021 J. Colloid Interface Sci. 584 15

    [2]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

    [3]

    Zhang K X, Yao C B, Wen X, Li Q H, Sun W J 2018 RSC Adv. 46 8

    [4]

    Nie M, Sun H, Gao Z D, Li Q, Xue Z H, Luo J, Liao J M 2020 Electrochem. Commun. 115 106719Google Scholar

    [5]

    Gu J J, Yang S M, Dong M Y, Qi Y K 2017 J. Alloys Compd. 728 25

    [6]

    Yang S M, Han W, Li H T, Qi Y K, Gu J J 2015 J. Electrochem. Soc. 162 E123Google Scholar

    [7]

    梁玲玲, 赵艳, 冯超 2020 物理学报 69 065201Google Scholar

    Liang L L, Zhao Y, Feng C 2020 Acta Phys. Sin. 69 065201Google Scholar

    [8]

    Yue Y, Coburn K, Reed B, Liang H 2018 J. Appl. Electrochem. 48 3

    [9]

    Ali H O 2017 Int. J. Surf. Eng. Coat. 95 6

    [10]

    Mahmoud A T, Josep F B, Lluis F M 2020 Microchim. Acta 187 230Google Scholar

    [11]

    Sergey E, Kushnir, Kirill S, Napolskii 2018 Mater. Des. 144 15

    [12]

    Pankaj K, Josep F B, Lluis F M 2020 Adv. Mater. Interfaces 7 22

    [13]

    Kirill S N, Alexey A N, Sergey E K 2020 Opt. Mater. 109 110317Google Scholar

    [14]

    Mahmoud A T, Josep F B, Lluis F M 2020 Sci. Rep. 10 2356Google Scholar

    [15]

    Mo R J, He L, Yan X M, Su T T, Zhou C X, Wang Z, Hong P Z 2018 Electrochem. Commun. 95 9Google Scholar

    [16]

    Liudmyla R, Kateryna K, Volodymyr O, Menglei C 2021 Ukr. Chem. Journ. 86 5

    [17]

    Li X C, Zhang T C, Gao P C 2018 Langmuir 34 49

    [18]

    Liu S X, Tian J L, Zhang W 2021 Nanotechnology 32 222001Google Scholar

    [19]

    Kapoor S, Ahmad H, Julien C M, Islam S S 2020 Appl. Surf. Sci. 512 145654Google Scholar

    [20]

    Sistani M, Staudinger P, Greil J, Holzbauer M, Detz H, Bertagnolli E, Lugstein A 2017 Nano Lett. 17 8Google Scholar

    [21]

    Fang J, Chen S, Vandenberghe W G, Fischetti M V 2017 IEEE Trans. Electron Devices 64 2758Google Scholar

    [22]

    杨淑敏, 韩伟, 顾建军, 李海涛, 岂云开 2015 物理学报 64 076102Google Scholar

    Yang S M, Han W, Gu J J, Li H T, Qi Y K 2015 Acta Phys. Sin. 64 076102Google Scholar

    [23]

    Ruiz-Clavijo A, Caballero-Calero O, Martín-González M 2021 Nanoscale 13 4

  • 图 1  多能场复合电沉积装置示意图 (a) 结构示意图; (b) 电沉积示意图

    Figure 1.  Schematic diagram of electrodeposition device with multienergy composite field. (a) Structure schematic diagram; (b) electrodeposition diagram.

    图 2  氧化铝薄膜和Al2O3-Co复合薄膜数码照片及XRD图谱 (a) 氧化电压20 V, 氧化时间11 min条件下制备的氧化铝薄膜数码照片; (b) 沉积电压12 V, 沉积时间60 s, 偏转电场120 V/m条件下制备的Al2O3-Co复合薄膜数码照片; (c) 图2(b) 所示薄膜的XRD图谱

    Figure 2.  Digital photos of alumina film and Al2O3-Co composite film and XRD diffraction pattern: (a) Digital photo of alumina film oxidized with a voltage of 20 V for 11 min; (b) digital photo of Al2O3-Co composite film deposited with a voltage of 12 V for 60 s and deflection field of 120 V/m; (c) XRD diffraction pattern of Al2O3-Co composite film shown in Fig. 2(b).

    图 3  Al2O3-Co复合薄膜SEM表面和截面照片 (a)−(c)分别对应图2(b)所示薄膜A到C的位置.

    Figure 3.  SEM surface and cross-sectional images of Al2O3-Co composite film: (a)−(c) corresponding to positions A to C in Fig. 2(b).

    图 4  Al2O3-Co复合薄膜的结构模型 (a)−(c)分别对应图2(b)所示薄膜的A到C的位置

    Figure 4.  The structural models of Al2O3-Co composite film: (a)−(c) corresponding to positions A to C in Fig. 2(b).

    图 5  图2(b)所示Al2O3-Co复合薄膜反射光谱

    Figure 5.  The reflection spectrum of Al2O3-Co composite film shown in Fig.2 (b).

    图 6  Al2O3-Co复合薄膜沿径向电流密度分布曲线

    Figure 6.  The curve of deposition current density along the radial of Al2O3-Co composite film shown in Fig.2 (b).

    图 7  Al2O3-Co复合薄膜区域划分示意图和单位面积沉积率曲线 (a) Al2O3-Co复合薄膜沿径向不同区域划分示意图; (b) 不同划分区域单位面积沉积率曲线

    Figure 7.  Partition diagram and curve of per unit area deposition rate of Al2O3-Co composite film: (a) Diagram of different regions along the radial direction of Al2O3-Co composite film shown in Fig.2 (b); (b) the curve of deposition rate per unit area via divided regions.

    图 8  图2(b)所示Al2O3-Co复合薄膜表面Co离子分布仿真图

    Figure 8.  Diagram of Co ion distribution on Al2O3-Co composite film surface shown in Fig.2 (b).

    图 9  室温下Al2O3-Co复合薄膜磁化曲线a−c对应图2(b)所示薄膜A到C位置

    Figure 9.  Hysteresis loops of different positions on Al2O3-Co composite film at room temperature. Curves a−c correspond to positions A to C in Fig. 2(b).

    图 10  Al2O3-Co复合薄膜数码照片 (a) 氧化电压20 V氧化时间14 min, 沉积电压12 V, 偏转电场120 V/m, 沉积时间分别为30, 40, 50, 60 s; (b) 氧化电压20 V氧化时间分别为12, 13, 14和15 min, 沉积电压12 V, 沉积时间为60 s, 偏转电场120 V/m

    Figure 10.  Digital photos of Al2O3-Co composite films: (a) The films were oxidized with a voltage of 20 V for 14 min. Then they were deposited with a voltage of 12 V for 30, 40, 50, 60 s and deflection field of 120 V/m; (b) the films were oxidized with a voltage of 20 V for 12, 13, 14 and 15 min. Then they were deposited with a voltage of 12 V for 60 s and deflection field of 120 V/m.

    图 11  Al2O3-Co复合薄膜数码照片 (a) 氧化电压20 V氧化时间14 min, 沉积电压为11, 12, 13 V, 沉积时间为60 s, 偏转电场120 V/m; (b) 氧化电压20 V氧化时间为14 min, 沉积电压12 V, 沉积时间为60 s, 偏转电场分别为100, 120 and 140 V/m

    Figure 11.  Digital photos of Al2O3-Co composite films: (a) The films were oxidized with a voltage of 20 V for 14 min. Then they were deposited with voltage 11, 12, 13 V for 60 s and deflection field of 120 V/m; (b) the films were oxidized with a voltage of 20 V for 14 min. Then they were deposited with a voltage 12 V for 60 s and deflection field of 100, 120 and 140 V/m.

    表 1  图2(b)所示薄膜不同区域参数表

    Table 1.  The parameters of different regions shown in Fig. 2(b).

    区域ABC
    氧化铝模板厚度/nm290290290
    氧化铝-Co复合薄膜厚度/nm305295290
    结构
    模型
    Co层厚度/nm1550
    Co纳米线密度/(%)3060100
    孔洞底部Co纳
    米线长度/nm
    160160160
    孔洞顶部Co纳
    米线长度/nm
    25150
    等效
    结构
    模型
    Co层等效厚度/nm1450
    Co纳米线长度/nm66102160
    未填充纳米
    孔洞长度/nm
    225188130
    干涉级别211
    反射波长/nm392632629
    对应颜色红紫色橙黄色橙红色
    平均折射率n(air-Al2O3)=1.55
    n(Co)=2.09
    n(Co-Al2O3)=1.69
    DownLoad: CSV

    表 2  复合薄膜区域划分面积和20 us末各区域粒子数统计表

    Table 2.  Partition areas of the film and particle statistics at the end of 20 μs.

    区域S1S2S3S4S5S6S7S8S9S10
    面积/mm26.311.113.514.815.515.514.813.511.16.3
    粒子数/个3112939385349849887
    DownLoad: CSV
  • [1]

    Domagalski J T, Xifre-Perez E, Tabrizi M A, Ferre-Borrull J, Marsal L F 2021 J. Colloid Interface Sci. 584 15

    [2]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

    [3]

    Zhang K X, Yao C B, Wen X, Li Q H, Sun W J 2018 RSC Adv. 46 8

    [4]

    Nie M, Sun H, Gao Z D, Li Q, Xue Z H, Luo J, Liao J M 2020 Electrochem. Commun. 115 106719Google Scholar

    [5]

    Gu J J, Yang S M, Dong M Y, Qi Y K 2017 J. Alloys Compd. 728 25

    [6]

    Yang S M, Han W, Li H T, Qi Y K, Gu J J 2015 J. Electrochem. Soc. 162 E123Google Scholar

    [7]

    梁玲玲, 赵艳, 冯超 2020 物理学报 69 065201Google Scholar

    Liang L L, Zhao Y, Feng C 2020 Acta Phys. Sin. 69 065201Google Scholar

    [8]

    Yue Y, Coburn K, Reed B, Liang H 2018 J. Appl. Electrochem. 48 3

    [9]

    Ali H O 2017 Int. J. Surf. Eng. Coat. 95 6

    [10]

    Mahmoud A T, Josep F B, Lluis F M 2020 Microchim. Acta 187 230Google Scholar

    [11]

    Sergey E, Kushnir, Kirill S, Napolskii 2018 Mater. Des. 144 15

    [12]

    Pankaj K, Josep F B, Lluis F M 2020 Adv. Mater. Interfaces 7 22

    [13]

    Kirill S N, Alexey A N, Sergey E K 2020 Opt. Mater. 109 110317Google Scholar

    [14]

    Mahmoud A T, Josep F B, Lluis F M 2020 Sci. Rep. 10 2356Google Scholar

    [15]

    Mo R J, He L, Yan X M, Su T T, Zhou C X, Wang Z, Hong P Z 2018 Electrochem. Commun. 95 9Google Scholar

    [16]

    Liudmyla R, Kateryna K, Volodymyr O, Menglei C 2021 Ukr. Chem. Journ. 86 5

    [17]

    Li X C, Zhang T C, Gao P C 2018 Langmuir 34 49

    [18]

    Liu S X, Tian J L, Zhang W 2021 Nanotechnology 32 222001Google Scholar

    [19]

    Kapoor S, Ahmad H, Julien C M, Islam S S 2020 Appl. Surf. Sci. 512 145654Google Scholar

    [20]

    Sistani M, Staudinger P, Greil J, Holzbauer M, Detz H, Bertagnolli E, Lugstein A 2017 Nano Lett. 17 8Google Scholar

    [21]

    Fang J, Chen S, Vandenberghe W G, Fischetti M V 2017 IEEE Trans. Electron Devices 64 2758Google Scholar

    [22]

    杨淑敏, 韩伟, 顾建军, 李海涛, 岂云开 2015 物理学报 64 076102Google Scholar

    Yang S M, Han W, Gu J J, Li H T, Qi Y K 2015 Acta Phys. Sin. 64 076102Google Scholar

    [23]

    Ruiz-Clavijo A, Caballero-Calero O, Martín-González M 2021 Nanoscale 13 4

  • [1] Tan Song-Lin, Zhuang Yong-Qi, Yi Jian-Hong. Preparation and properties of multi-walled carbon nanotube reinforced alumina composites by sol- spray method. Acta Physica Sinica, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [2] Qian Qi-Sheng, Liu Hui-Yan, Zha Yong-Peng, Ni Hai-Bin. Generation and control of structural color in asymmetric coaxial cavity. Acta Physica Sinica, 2022, 71(8): 084103. doi: 10.7498/aps.71.20211337
    [3] Effects of multi-energy fields electrodeposition on properties of alumina-cobalt composite films. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211313
    [4] Tudahong Aba, Qu Yu, Bai Jun-Ran, Zhang Zhong-Yue. Studies of circular dichroism of planar composite metal nanostructure arrays. Acta Physica Sinica, 2020, 69(10): 107802. doi: 10.7498/aps.69.20200130
    [5] Liu Xue, Ran Xian-Wen, Xu Zhi-Hong, Tang Wen-Hui. Equivalence of energy deposition profile in target between electron beam of multi-energy composite spectrum and X-ray. Acta Physica Sinica, 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [6] Yang Shu-Min, Han Wei, Gu Jian-Jun, Li Hai-Tao, Qi Yun-Kai. Preparation and study of anodic alumina thin films with rainbow rings. Acta Physica Sinica, 2015, 64(7): 076102. doi: 10.7498/aps.64.076102
    [7] Ren Gui-Ming, Zheng Yuan-Yuan, Wang Ding, Wang Lin, Chen Xiao-Hong, Wang Ling, Ma Min, Liu Hua-Bing. Isotope effect of trihydride aluminum oxide. Acta Physica Sinica, 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [8] Li Guo-Dong, Wang Qian, Deng Bao-Xia, Zhang Ya-Jing. Origin of nanopore alumina film photoluminescence: three kinds of defect centers. Acta Physica Sinica, 2014, 63(24): 247802. doi: 10.7498/aps.63.247802
    [9] Qin Fei-Fei, Zhang Hai-Ming, Wang Cai-Xia, Guo Cong, Zhang Jing-Jing. Design and simulation of anodic aluminum oxide nanograting double light trapping structure for thin film silicon solar cells. Acta Physica Sinica, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [10] Wu Zhi-Guo, Zhang Peng-Ju, Xu Liang, Li Shuan-Kui, Wang Jun, Li Xu-Dong, Yan Peng-Xun. Field emission properties of amorphous carbon nanodot arrays in a novel anodic aluminum oxide template by self-assembly technique. Acta Physica Sinica, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [11] Liao Guo-Jin, Yan Shao-Feng, Ba De-Chun. The blue luminescence of cerium doped aluminum oxide thin film. Acta Physica Sinica, 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [12] Zhang Chao, Wu Wei-Dong, Chen Zheng-Hao, Zhou Yue-Liang, Cheng Xin-Lu, Yang Xiang-Dong, He Ying-Jie, Sun Wei-Guo, Tang Yong-Jian. Fabrication and structure studies of Co:BaTiO3 nano composite thin films. Acta Physica Sinica, 2005, 54(2): 982-986. doi: 10.7498/aps.54.982
    [13] Wang Cheng-Wei, Wang Jian, Li Yan, Liu Wei-Min, Xu Tao, Sun Xiao-Wei, Li Hu-Lin. Determination of the optical constants of porous anodic aluminum oxide films. Acta Physica Sinica, 2005, 54(1): 439-444. doi: 10.7498/aps.54.439
    [14] Li Yan, Wang Cheng-Wei, Tian Jun, Liu Wei-Min, Chen Miao, Li Hu-Lin. Optical properties of ordered Co/AAO nano-array composite structure. Acta Physica Sinica, 2004, 53(5): 1594-1598. doi: 10.7498/aps.53.1594
    [15] MO YAO-WU, XIA YI-BEN, HUANG XIAO-QIN, JU JIAN-HUA, WANG HONG. RAMAN SPECTRO-ANALYSES OF DIAMOND-FILMS DEPOSITED ON ALUMINA CERAMICS. Acta Physica Sinica, 1997, 46(3): 618-624. doi: 10.7498/aps.46.618
    [16] CHEN LING-BING, A. WAGIKI, T. AUZAWA, M.YAMASHITA, T. TAKO. INVESTIGATION ON STRUCTURE,SPECTRUM AND LINEAR DICHROISM OF Snpc POLYCRYSTALLINE FILMS. Acta Physica Sinica, 1996, 45(1): 146-152. doi: 10.7498/aps.45.146
    [17] Wu Shan. . Acta Physica Sinica, 1995, 44(6): 1003-1008. doi: 10.7498/aps.44.1003
    [18] CHENG HUAN-SHENG, YAO XIAO-WEI, YANG FU-JIA. STUDIES OF INTERFACE ATOMIC STRUCTURE OF Al2O3/Al(100) BY MeV ION SCATTERING AND CHANNELING. Acta Physica Sinica, 1993, 42(7): 1110-1115. doi: 10.7498/aps.42.1110
    [19] Cheng Huan-sheng; Yao Xiao-wei; Yang fu-jia. STUDIES OF INTERFACE ATOMIC STRUCTURE OF Al_2_O_3_/AI(100) BY MeV ION SCATTERING AND CHANNELING STUDIES OF INTERFACE ATOMIC STRUCTURE OF AL_2_O_3_/AI (100) BY MeV ION SCATTERING AND CHANNELING. Acta Physica Sinica, 1991, 40(7): 1110-1115. doi: 10.7498/aps.40.1110
    [20] . Acta Physica Sinica, 1960, 16(7): 423-424. doi: 10.7498/aps.16.423
Metrics
  • Abstract views:  2974
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  15 July 2021
  • Accepted Date:  19 September 2021
  • Available Online:  27 December 2021
  • Published Online:  05 January 2022

/

返回文章
返回