搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真

秦飞飞 张海明 王彩霞 郭聪 张晶晶

基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真

秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶
PDF
导出引用
  • 本文提出了表面和底部均带有阳极氧化铝(AAO)纳米光栅的薄膜硅太阳能电池双重陷光结构,利用FDTD软件仿真研究了AAO纳米光栅的周期、厚度和占空比对薄膜硅太阳能电池短路电流密度的影响,并对AAO结构参数进行了优化. 仿真结果表明,表面AAO最佳结构参数是周期440 nm,厚度75 nm,占空比0.5,底部AAO最佳结构参数是周期380 nm,厚度90 nm,占空比为0.75. 双重AAO组合陷光结构可有效增加薄膜硅太阳能电池在280–1100 nm范围内的光吸收,吸收相对增强可以达到74.44%.
    • 基金项目: 国家自然科学基金(批准号:61274064)资助的课题.
    [1]

    Chen J Y, Chang W L, Huang C K, Sun K W 2011 Opt. Express 19 14411

    [2]

    Sun C H, Ho B J, Jiang B, Jiang P 2008 Opt. Lett. 33 2224

    [3]

    Mizutani A, Kanamori Y, Maruyama A, Kikuta H 2009 J. Opt. Soc. Am. A 26 337

    [4]

    Li Y F, Zhang J H, Yang B 2010 Nano Today 5 117

    [5]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson W 1998 Appl. Phys. 83 3323

    [6]

    Wada K, Kimerling L C, Toyodan N 2004 Patent 6 750 393

    [7]

    Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kinerling L C, Alamairu B A 2006 Appl. Phys. Let. 89 111111

    [8]

    Zhu Z P, Qin Y Q 2013 Acta Phys. Sin. 62 157801(in Chinese) [朱兆平, 秦亦强 2013 物理学报 62 157801]

    [9]

    Li G L, He L J, L J, Li X S, Liang S, Gao M M, Yuan H W 2013 Acta Phys. Sin. 62 197202(in Chinese) [李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙 袁海雯 2013 物理学报 62 197202]

    [10]

    Fang J, Qi Y H, Wang C R, Wei Z, Fang Y Q, Yi Z Z, Jing X 2012 Microelectron. Eng. 103 126

    [11]

    Bermel P, Luo C Y, Zeng L R, Lionel C, Kimerling, John D 2007 Opt. Express 15 16986

    [12]

    Zhong H, Gao Y Y, Zhou R L, Zhou B J, Tang LQ, Wu L X, Li H J 2011 Spectrosc. Spect. Anal. 3 1739(in Chinese) [钟慧, 高永毅, 周仁龙, 周并举, 唐立强, 吴玲锡, 李宏建 2011 光谱学与光谱分析 3 1739]

    [13]

    Cheng F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [14]

    James G M, Shi S Y, Chen C H, Timothy C, Allen B, Christiana H, Dennis W P 2008 Opt. Express 16 15238

    [15]

    Joannopoulos J D, Johnson S G, Winn J N Meade R D 2008 Photonic Crystals: Molding The Flow of Light (Princeton: Princeton University Press) p44

    [16]

    Sheng P, Bloch A, Stepleman R 1983 Appl. Phys. Lett. 43 579

    [17]

    Morf R H, Kiess H 1989 Proceedings of Ninth E. C. Photovoltaic Solar Energy Conference Freiburg, West Germany, September 25-29, 1999 p313

    [18]

    Kiess H, Morf R H 1989 Proceedings of the Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VⅢ San Diego, USA, August 10-11, 1989 p124

    [19]

    Heine C, Morf R H 1995 Appl. Opt. 34 2476

    [20]

    Zheng C G, Jiang J L, Xian F L, Qiang H X, Wu H, Li X Y 2011 Chin. Phys. B 20 094201

    [21]

    Masuda H, Fukuda K 1995 Science 268 1466

    [22]

    Liu H W, Guo H M, Wang Y L, Shen C M, Yang H T, Wang Y T, Wei L 2004 Acta Phys. Sin. 53 626(in Chinese) [刘虹雯, 郭海明, 王业亮, 申承民, 杨海涛, 王雨田, 魏龙 2004 物理学报 53 626]

    [23]

    Shimizu T, Nagayanagi M, Ishida T, Sakata O, Oku T, Sakaue H, Takahagi T, Shingubara S 2006 Elctrochem. Solid-State Lett. 9 13

    [24]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104

    [25]

    Sheng X, Liu J F, Coronel N, Agarwal A M, Michel, Kimling L C 2010 IEEE Photonic. Tech. L. 22 1394

    [26]

    Yang T S, Wang X D, Liu W, Shi Y P, Yang F H 2013 Opt. Express 21 18207

    [27]

    Sheng X, Liu J F, Michel J, Agarwal A G, Kimerling L C 2009 Proceedings of the 34th IEEE Photovoltaic Specialists Conference Philadelphia, PA, June 7-12, 2009 p2395

  • [1]

    Chen J Y, Chang W L, Huang C K, Sun K W 2011 Opt. Express 19 14411

    [2]

    Sun C H, Ho B J, Jiang B, Jiang P 2008 Opt. Lett. 33 2224

    [3]

    Mizutani A, Kanamori Y, Maruyama A, Kikuta H 2009 J. Opt. Soc. Am. A 26 337

    [4]

    Li Y F, Zhang J H, Yang B 2010 Nano Today 5 117

    [5]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson W 1998 Appl. Phys. 83 3323

    [6]

    Wada K, Kimerling L C, Toyodan N 2004 Patent 6 750 393

    [7]

    Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kinerling L C, Alamairu B A 2006 Appl. Phys. Let. 89 111111

    [8]

    Zhu Z P, Qin Y Q 2013 Acta Phys. Sin. 62 157801(in Chinese) [朱兆平, 秦亦强 2013 物理学报 62 157801]

    [9]

    Li G L, He L J, L J, Li X S, Liang S, Gao M M, Yuan H W 2013 Acta Phys. Sin. 62 197202(in Chinese) [李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙 袁海雯 2013 物理学报 62 197202]

    [10]

    Fang J, Qi Y H, Wang C R, Wei Z, Fang Y Q, Yi Z Z, Jing X 2012 Microelectron. Eng. 103 126

    [11]

    Bermel P, Luo C Y, Zeng L R, Lionel C, Kimerling, John D 2007 Opt. Express 15 16986

    [12]

    Zhong H, Gao Y Y, Zhou R L, Zhou B J, Tang LQ, Wu L X, Li H J 2011 Spectrosc. Spect. Anal. 3 1739(in Chinese) [钟慧, 高永毅, 周仁龙, 周并举, 唐立强, 吴玲锡, 李宏建 2011 光谱学与光谱分析 3 1739]

    [13]

    Cheng F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [14]

    James G M, Shi S Y, Chen C H, Timothy C, Allen B, Christiana H, Dennis W P 2008 Opt. Express 16 15238

    [15]

    Joannopoulos J D, Johnson S G, Winn J N Meade R D 2008 Photonic Crystals: Molding The Flow of Light (Princeton: Princeton University Press) p44

    [16]

    Sheng P, Bloch A, Stepleman R 1983 Appl. Phys. Lett. 43 579

    [17]

    Morf R H, Kiess H 1989 Proceedings of Ninth E. C. Photovoltaic Solar Energy Conference Freiburg, West Germany, September 25-29, 1999 p313

    [18]

    Kiess H, Morf R H 1989 Proceedings of the Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VⅢ San Diego, USA, August 10-11, 1989 p124

    [19]

    Heine C, Morf R H 1995 Appl. Opt. 34 2476

    [20]

    Zheng C G, Jiang J L, Xian F L, Qiang H X, Wu H, Li X Y 2011 Chin. Phys. B 20 094201

    [21]

    Masuda H, Fukuda K 1995 Science 268 1466

    [22]

    Liu H W, Guo H M, Wang Y L, Shen C M, Yang H T, Wang Y T, Wei L 2004 Acta Phys. Sin. 53 626(in Chinese) [刘虹雯, 郭海明, 王业亮, 申承民, 杨海涛, 王雨田, 魏龙 2004 物理学报 53 626]

    [23]

    Shimizu T, Nagayanagi M, Ishida T, Sakata O, Oku T, Sakaue H, Takahagi T, Shingubara S 2006 Elctrochem. Solid-State Lett. 9 13

    [24]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104

    [25]

    Sheng X, Liu J F, Coronel N, Agarwal A M, Michel, Kimling L C 2010 IEEE Photonic. Tech. L. 22 1394

    [26]

    Yang T S, Wang X D, Liu W, Shi Y P, Yang F H 2013 Opt. Express 21 18207

    [27]

    Sheng X, Liu J F, Michel J, Agarwal A G, Kimerling L C 2009 Proceedings of the 34th IEEE Photovoltaic Specialists Conference Philadelphia, PA, June 7-12, 2009 p2395

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1825
  • PDF下载量:  751
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-22
  • 修回日期:  2014-05-27
  • 刊出日期:  2014-10-05

基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真

  • 1. 天津工业大学理学院, 天津 300387
    基金项目: 

    国家自然科学基金(批准号:61274064)资助的课题.

摘要: 本文提出了表面和底部均带有阳极氧化铝(AAO)纳米光栅的薄膜硅太阳能电池双重陷光结构,利用FDTD软件仿真研究了AAO纳米光栅的周期、厚度和占空比对薄膜硅太阳能电池短路电流密度的影响,并对AAO结构参数进行了优化. 仿真结果表明,表面AAO最佳结构参数是周期440 nm,厚度75 nm,占空比0.5,底部AAO最佳结构参数是周期380 nm,厚度90 nm,占空比为0.75. 双重AAO组合陷光结构可有效增加薄膜硅太阳能电池在280–1100 nm范围内的光吸收,吸收相对增强可以达到74.44%.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回