Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Double-opening metal ring based terahertz metamaterial absorber sensor

Ge Hong-Yi Li Li Jiang Yu-Ying Li Guang-Ming Wang Fei Lü Ming Zhang Yuan Li Zhi

Citation:

Double-opening metal ring based terahertz metamaterial absorber sensor

Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi
PDF
HTML
Get Citation
  • Terahertz metamaterial biosensor is a label-free affinity sensor that enhances the strength of the local electromagnetic field. It is extremely sensitive to changes in the dielectric constant of the surrounding environment, thereby providing a new method of detecting micro or trace biological samples. In this work, a highly sensitive terahertz refractive index metamaterial absorber sensor for detecting the biological sample is proposed. The sensor consists of two concentric open metal rings and is a multimode resonator. With two independent adjustable operating bands in a frequency range of 0.7–2.5 THz, i.e. 1.079 THz and 2.271 THz, the sensor can observe different electromagnetic effects of the sample in the terahertz band. We evaluate the performance of terahertz sensors with indicators such as absorption characteristics and sensitivity. The sensor possesses the absorption higher than 99.9% in free space. In addition, the large Q value indicates that the sensor provides high frequency selectivity characteristics. Especially, the sensitivity of the sensor achieves 693.7 GHz/RIU, with a minimum refractive index change of 0.004 for the detection of biological samples, which provides good sensing performance. In the proposed sensor, a flexible material with low dielectric constant is used, which has the advantages of biocompatibility and portability and shows high stability at the 0°–60° oblique incidence angle and within 4% fabrication error. Moreover, the detection effectiveness of the sensor is verified by simulation experiments with ethanol-water mixtures. The sensor units designed in this paper have small interactions among them, work stably and are easily fabricated The sensor can significantly enhance the interaction between light and matter and has broad application prospects in terahertz high-sensitivity biosensing detection.
      Corresponding author: Jiang Yu-Ying, jiangyuying11@163.com ; Zhang Yuan, zy_haut@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975053, 61705061), the Open Fund Project of Key Laboratory of Grain Information Processing & Control, Ministry of Education, China, the Henan University of Technology, China (Grant No. KFJJ2020103), Cultivation Programme for Young Backbone Teachers in Henan University of Technology, the Natural Science Foundation of Henan Province, China (Grant No. 202300410111), the Program for Science &Technology Innovation Talents in Universities of Henan Province, China (Grant No. 22HASTIT017), the Major Public Welfare Projects of Henan Province, China (Grant No. 201300210100).
    [1]

    Alsharif M H, Albreem M, Solyman A, Kim S 2021 Comput. Mater. Con. 66 2831Google Scholar

    [2]

    Ma A C, Zhong R B, Wu Z H, Wang Y Q, Yang L, Liang Z K, Fang Z, Liu S G 2020 Front. Phys. 8 584639Google Scholar

    [3]

    Barnes M E, Daniell G J, Gow P, Apostolopoulos V 2014 J. Infrared. Millim. Te. 35 1030Google Scholar

    [4]

    Zhou J, Zhang X, Huang G R, Yang X, Zhang Y, Zhan X Y, Tian H Y, Xiong Y, Wang Y X, Fu W L 2021 ACS Sensors 6 1884Google Scholar

    [5]

    Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T 2007 Rev. Sci. Instrum. 78 035107Google Scholar

    [6]

    Sun X, Zhu G K, Hu J J, Jiang X, Liu Y 2019 J. Appl. Spectrosc. 86 661Google Scholar

    [7]

    Wang L, Qi Z P, Li Z, Guo L 2021 Opt. Int. J. Light Electron. Opt. 239 166873Google Scholar

    [8]

    Ahmadivand A, Gerislioglu B, Tomitaka A, Manickam P, Pala N 2018 Biomed. Opt. Express. 9 373Google Scholar

    [9]

    Zheludev N I 2010 Science 328 582Google Scholar

    [10]

    Shelby, R. A 2001 Ence. 292 77Google Scholar

    [11]

    Kaina N, Lemoult F, Fink M, Lerosey G 2015 Nat. Int. J. Sci. 525 77Google Scholar

    [12]

    Chen J B, Wang Y, Jia B H, Geng T, Li X P, Feng L, Qian W, Liang B M, Zhang X X, Gu M, Zhuang S L 2011 Nat. Photonics. 5 436Google Scholar

    [13]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 465Google Scholar

    [14]

    Wang G Q, Zhu F J, Lang T T, Liu J J, Hong Z, Qin J Y 2021 Nanoscale. Res. Lett. 16 109Google Scholar

    [15]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Tech. El. 20 591Google Scholar

    [16]

    Rezazadeh A, Soheilifar M R 2021 Optic. Quant. Electron. 53 555Google Scholar

    [17]

    庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强 2021 物理学报 70 321Google Scholar

    Pang H Z, Wang X, Wang J L, Wang Z L, Liu S Y L T, Tian H Q 2021 Acta Phys. Sin. 70 321Google Scholar

    [18]

    Chen Z Y, Qu F F, Wang Y, Nie P C 2021 Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 263 120222Google Scholar

    [19]

    Veeraselvam A, Mohammed G N A, Savarimuthu K, Sankararajan R 2021 Opt. Quant. Electron. 53 354Google Scholar

    [20]

    Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024Google Scholar

    [21]

    Shen Z L, Li S N, Xu Y F, Yin W, Zhang L Y, Chen X F 2021 Phys. Rev. Appl. 16 014066Google Scholar

    [22]

    王月娥, 李东霞, 李智, 胡放荣 2020 光谱学与光谱分析 40 1785Google Scholar

    Wang Y E, Li D X, Li Z, Hu F R 2020 Spectrosc. Spec. Anal. 40 1785Google Scholar

    [23]

    Jepsen P U, Merbold H 2010 J. Infrared. Millim. Te. 31 430Google Scholar

    [24]

    Zhang C B, Xue T J, Zhang J, Liu L H, Xie J H, Wang G M, Yao J Q, Zhu W R, Ye X D 2021 Nanophotonics. 11 101Google Scholar

    [25]

    陈涛, 黄锋宇, 钟鑫, 蒋未杰, 张大鹏 2021 光子学报 50 131Google Scholar

    Chen T, Huang F Y, Zhong X, Jiang W J, Zhang D P 2021 Acta Photonica Sin. 50 131Google Scholar

    [26]

    Islam M S, Sultana J, Biabanifard M, Vafapour Z, Nine M J, Dinovitser A, Cordeiro C M B, Ng B W H, Abbott D 2020 Carbon. 158 559Google Scholar

    [27]

    Saadeldin A S, Hameed M F O, Elkaramany E M A, Obayya S S A 2019 IEEE Sens. J. 19 7993Google Scholar

    [28]

    杨洁萍, 王民昌, 邓琥, 康莹, 李宗仁, 刘泉澄, 熊亮, 武志翔, 屈薇薇, 尚丽平 2021 光学学报 41 218

    Yang J P, Wang M C, Deng H, Kang Y, Li Z R, Liu Q C, Xiong L, Wu Z X, Qu W W, Shang L P 2021 Acta Optica. Sin. 41 218

    [29]

    Jepsen P U, Mller U, Merbold H 2007 Opt. Express. 15 14717Google Scholar

  • 图 1  (a)周期阵列结构; (b)单元结构上视图; (c)单元结构侧视图

    Figure 1.  (a) Periodic array structure; (b) top view of unit structure; (c) side view of unit structure

    图 2  无分析物时传感器吸收特性仿真曲线

    Figure 2.  Simulation curve of sensor absorption characteristics in the absence of analyte.

    图 3  传感器在谐振频率处的电场分布 (a) f1处电场分布; (b) f2处电场分布

    Figure 3.  The electric field distribution of the sensor at the resonance frequency. (a) Electric field distribution at f1; (b) electric field distribution at f2.

    图 4  传感器在谐振频率处的电流分布  (a) f1处表面电流分布; (b) f2处表面电流分布; (c) f1处底板电流分布; (d) f2处底板电流分布

    Figure 4.  The current distribution of the sensor at the resonance frequency: (a) Surface current distribution at f1; (b) surface current distribution at f2; (c) floor current distribution at f1; (d) floor current distribution at f2.

    图 5  子结构的吸收特性曲线

    Figure 5.  Absorption characteristic curve of substructure.

    图 6  内环移动距离对吸收谱的影响  (a)内环上下移动距离; (b)内环左右移动距离

    Figure 6.  Effect of inner ring shift distance on absorption spectrum: (a) Vertical travel distance of the inner ring; (b) horizontal travel distance of the inner ring.

    图 7  旋转角度对吸收谱的影响 (a)内环旋转角度; (b)外环旋转角度

    Figure 7.  Effect of rotating angle on the absorption spectrum: (a) Rotating angle of the inner ring; (b) rotating angle of the outer ring.

    图 8  内环旋转60°、单独外环的吸收谱及电场分布

    Figure 8.  Absorption spectrum and electric field distribution of the inner ring rotated by 60° and the outer ring alone.

    图 9  传感器几何参数变化吸收特性曲线. (a)外环半径r1; (b)外环开口间隙g1; (c)外环线宽w1; (d)内环半径r2; (e)内环开口间隙g2; (f)内环线宽w2

    Figure 9.  Absorption characteristics curve with changes in sensor geometric parameters: (a) Outer ring radius r1; (b) outer ring opening gap g1; (c) outer ring line width w1; (d) inner ring radius r2; (e) inner ring opening gap g2; (f) inner ring line width w2.

    图 10  (a), (b), (c)分别为不同周期P、不同衬底厚度、不同衬底材料的吸收特性曲线; (d)透射型传感器结构的传输特性曲线

    Figure 10.  (a), (b), (c) are the absorption characteristic curves of different periods P, different substrate thicknesses, and different substrate materials; (d) transmission characteristic curves of the transmissive sensor structure.

    图 11  (a)待测分析物随折射率变化的吸收特性曲线和(b)频移及线性拟合

    Figure 11.  (a) Absorption characteristic curve and (b) frequency shift and linear fitting of the analyte to be measured with the change of refractive index.

    图 12  待测分析物厚度的影响 (a)不同厚度下的吸收谱; (b)频率偏移随分析物厚度的变化

    Figure 12.  The influence of the thickness of the analyte to be measured: (a) Absorption characteristic curves under different thicknesses; (b) frequency deviation changes with analyte thickness.

    图 13  不同中间介质层材料对传感器谐振频率f1, f2处偏移量的影响及其线性拟合

    Figure 13.  The influence of different intermediate dielectric layer materials on the offset of the sensor resonance frequency f1 and f2 and its linear fitting.

    图 14  (a)TE和TM偏振电磁波下传感器的吸收谱; (b)不同入射角度的吸收特性曲线; (c)不同方位角度的吸收特性曲线

    Figure 14.  (a) Absorption spectra of the sensor under TE and TM polarized electromagnetic waves; (b) absorption characteristic curves at different incident angles; (c) absorption characteristic curves at different azimuth angles.

    图 15  误差对传感器性能的影响

    Figure 15.  The effect of error on sensor performance.

    图 16  制造误差对传感器灵敏度的影响

    Figure 16.  The influence of manufacturing error on sensor sensitivity.

    图 17  乙醇-水混合物室温下吸收特性曲线 (a)低频; (b)高频

    Figure 17.  Absorption characteristics curve of ethanol-water mixture at room temperature: (a) Low frequency; (b) high frequency.

    表 1  单元结构的几何参数

    Table 1.  Geometric parameters of the unit structure.

    参数Phr1w1g1r2w2g2tt1
    值/μm8020182410340.20.5
    DownLoad: CSV

    表 2  所提出的传感器与参考文献中传感器对比

    Table 2.  Comparison of the proposed sensors with the sensors in the references.

    DesignOperating band/THzQ-factorSensitivity/(GHz/RIU)FOMAbsorption/%
    文献[17]0.1—1.029.3853.5899.83
    文献[25]0.4—1.030.553719.299.8
    文献[26]0.1—2.06699.7
    文献[27]1.0—3.022.053002.9499.9
    文献[28]0.2—1.4443001599.9
    This work0.7—2.532.1693.79.899.98
    DownLoad: CSV

    表 3  乙醇-水溶液不同浓度折射率

    Table 3.  Refractive indices of ethanol-water solutions at different concentrations.

    Ethanol-water solution
    concentration (%)
    ε'ε''n
    1002.60.661.63
    902.70.71.66
    802.90.821.72
    7030.831.75
    603.20.981.81
    503.61.21.92
    403.781.431.978
    303.71.91.982
    204.22.42.13
    104.43.12.21
    04.734.072.34
    DownLoad: CSV
  • [1]

    Alsharif M H, Albreem M, Solyman A, Kim S 2021 Comput. Mater. Con. 66 2831Google Scholar

    [2]

    Ma A C, Zhong R B, Wu Z H, Wang Y Q, Yang L, Liang Z K, Fang Z, Liu S G 2020 Front. Phys. 8 584639Google Scholar

    [3]

    Barnes M E, Daniell G J, Gow P, Apostolopoulos V 2014 J. Infrared. Millim. Te. 35 1030Google Scholar

    [4]

    Zhou J, Zhang X, Huang G R, Yang X, Zhang Y, Zhan X Y, Tian H Y, Xiong Y, Wang Y X, Fu W L 2021 ACS Sensors 6 1884Google Scholar

    [5]

    Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T 2007 Rev. Sci. Instrum. 78 035107Google Scholar

    [6]

    Sun X, Zhu G K, Hu J J, Jiang X, Liu Y 2019 J. Appl. Spectrosc. 86 661Google Scholar

    [7]

    Wang L, Qi Z P, Li Z, Guo L 2021 Opt. Int. J. Light Electron. Opt. 239 166873Google Scholar

    [8]

    Ahmadivand A, Gerislioglu B, Tomitaka A, Manickam P, Pala N 2018 Biomed. Opt. Express. 9 373Google Scholar

    [9]

    Zheludev N I 2010 Science 328 582Google Scholar

    [10]

    Shelby, R. A 2001 Ence. 292 77Google Scholar

    [11]

    Kaina N, Lemoult F, Fink M, Lerosey G 2015 Nat. Int. J. Sci. 525 77Google Scholar

    [12]

    Chen J B, Wang Y, Jia B H, Geng T, Li X P, Feng L, Qian W, Liang B M, Zhang X X, Gu M, Zhuang S L 2011 Nat. Photonics. 5 436Google Scholar

    [13]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 465Google Scholar

    [14]

    Wang G Q, Zhu F J, Lang T T, Liu J J, Hong Z, Qin J Y 2021 Nanoscale. Res. Lett. 16 109Google Scholar

    [15]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Tech. El. 20 591Google Scholar

    [16]

    Rezazadeh A, Soheilifar M R 2021 Optic. Quant. Electron. 53 555Google Scholar

    [17]

    庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强 2021 物理学报 70 321Google Scholar

    Pang H Z, Wang X, Wang J L, Wang Z L, Liu S Y L T, Tian H Q 2021 Acta Phys. Sin. 70 321Google Scholar

    [18]

    Chen Z Y, Qu F F, Wang Y, Nie P C 2021 Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 263 120222Google Scholar

    [19]

    Veeraselvam A, Mohammed G N A, Savarimuthu K, Sankararajan R 2021 Opt. Quant. Electron. 53 354Google Scholar

    [20]

    Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024Google Scholar

    [21]

    Shen Z L, Li S N, Xu Y F, Yin W, Zhang L Y, Chen X F 2021 Phys. Rev. Appl. 16 014066Google Scholar

    [22]

    王月娥, 李东霞, 李智, 胡放荣 2020 光谱学与光谱分析 40 1785Google Scholar

    Wang Y E, Li D X, Li Z, Hu F R 2020 Spectrosc. Spec. Anal. 40 1785Google Scholar

    [23]

    Jepsen P U, Merbold H 2010 J. Infrared. Millim. Te. 31 430Google Scholar

    [24]

    Zhang C B, Xue T J, Zhang J, Liu L H, Xie J H, Wang G M, Yao J Q, Zhu W R, Ye X D 2021 Nanophotonics. 11 101Google Scholar

    [25]

    陈涛, 黄锋宇, 钟鑫, 蒋未杰, 张大鹏 2021 光子学报 50 131Google Scholar

    Chen T, Huang F Y, Zhong X, Jiang W J, Zhang D P 2021 Acta Photonica Sin. 50 131Google Scholar

    [26]

    Islam M S, Sultana J, Biabanifard M, Vafapour Z, Nine M J, Dinovitser A, Cordeiro C M B, Ng B W H, Abbott D 2020 Carbon. 158 559Google Scholar

    [27]

    Saadeldin A S, Hameed M F O, Elkaramany E M A, Obayya S S A 2019 IEEE Sens. J. 19 7993Google Scholar

    [28]

    杨洁萍, 王民昌, 邓琥, 康莹, 李宗仁, 刘泉澄, 熊亮, 武志翔, 屈薇薇, 尚丽平 2021 光学学报 41 218

    Yang J P, Wang M C, Deng H, Kang Y, Li Z R, Liu Q C, Xiong L, Wu Z X, Qu W W, Shang L P 2021 Acta Optica. Sin. 41 218

    [29]

    Jepsen P U, Mller U, Merbold H 2007 Opt. Express. 15 14717Google Scholar

  • [1] Wang Yang-Tao, Jing Wei-Xuan, Han Feng, Meng Qing-Zhi, Lin Qi-Jing, Zhao Li-Bo, Jiang Zhuang-De. Study on influence of ring hole array metamaterial on performance of pyroelectric terahertz detectors. Acta Physica Sinica, 2023, 72(4): 048701. doi: 10.7498/aps.72.20221174
    [2] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [3] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [4] Wang Xin, Wang Jun-Lin. Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band. Acta Physica Sinica, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [5] Wei Chen-Wei, Cao Tun. α-MoO3 based tunable Fabry-Pérot cavity colorimetric biosensor. Acta Physica Sinica, 2021, 70(4): 048701. doi: 10.7498/aps.70.20201548
    [6] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [7] Wang Yue, Cui Zi-Jian, Zhang Xiao-Ju, Zhang Da-Chi, Zhang Xiang, Zhou Tao, Wang Xuan. Research progress of metamaterials powered advanced terahertz biochemical sensing detection techniques. Acta Physica Sinica, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [8] Zhou Shi-Hao, Fang Xin-Yu, Li Meng-Meng, Yu Ye-Feng, Chen Ru-Shan. S/X dual-band real-time modulated frequency selective surface based absorber. Acta Physica Sinica, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [9] Chen Jun, Yang Mao-Sheng, Li Ya-Di, Cheng Deng-Ke, Guo Geng-Liang, Jiang Lin, Zhang Hai-Ting, Song Xiao-Xian, Ye Yun-Xia, Ren Yun-Peng, Ren Xu-Dong, Zhang Ya-Ting, Yao Jian-Quan. Tunable terahertz wave broadband absorber based on metamaterial. Acta Physica Sinica, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [10] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [11] Guo Chang, Zhang Yan. Super diffraction imaging with wave vector selective metasurface. Acta Physica Sinica, 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [12] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [13] Bao Di, Shen Xiao-Peng, Cui Tie-Jun. Progress of terahertz metamaterials. Acta Physica Sinica, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [14] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [15] Zou Tao-Bo, Hu Fang-Rong, Xiao Jing, Zhang Long-Hui, Liu Fang, Chen Tao, Niu Jun-Hao, Xiong Xian-Ming. Design of a polarization-insensitive and broadband terahertz absorber using metamaterials. Acta Physica Sinica, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [16] Li Jia-Dong, Cheng Jun-Jie, Miao Bin, Wei Xiao-Wei, Zhang Zhi-Qiang, Li Hai-Wen, Wu Dong-Min. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [17] Liu Ya-Hong, Fang Shi-Lei, Gu Shuai, Zhao Xiao-Peng. Multiband and broadband metamterial absorbers. Acta Physica Sinica, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [18] Han Song, Yang He-Lin. Study on the design and measurement of dual-directional multi-band metamaterial absorber. Acta Physica Sinica, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [19] Shen Xiao-Peng, Cui Tie-Jun, Ye Jian-Xiang. Dual band metamaterial absorber in microwave regime. Acta Physica Sinica, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [20] Hao Peng, Wu Yi-Hui, Zhang Ping. Study of interaction of surface plasmon resonance sensor with nano-gold. Acta Physica Sinica, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
Metrics
  • Abstract views:  4798
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2021
  • Accepted Date:  24 January 2022
  • Available Online:  02 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回