Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on influence of ring hole array metamaterial on performance of pyroelectric terahertz detectors

Wang Yang-Tao Jing Wei-Xuan Han Feng Meng Qing-Zhi Lin Qi-Jing Zhao Li-Bo Jiang Zhuang-De

Citation:

Study on influence of ring hole array metamaterial on performance of pyroelectric terahertz detectors

Wang Yang-Tao, Jing Wei-Xuan, Han Feng, Meng Qing-Zhi, Lin Qi-Jing, Zhao Li-Bo, Jiang Zhuang-De
PDF
HTML
Get Citation
  • In order to improve the detection performance of 0.1–1THz terahertz wave, a new lithium tantalate pyroelectric terahertz detector based on ring hole array metamaterial is proposed. The quantitative influences of the characteristic parameters such as inner diameter, outer diameter, period and thickness on the transmission bandwidth and transmittance of ring hole array metamaterials are analyzed by simulation. The mechanisms of the influences of different combinations of ring hole array metamaterials and pyroelectric detectors on the detection bandwidth and detection rate of terahertz waves are clarified. The lithium tantalate pyroelectric terahertz detectors of the ring hole array metamaterial ware are fabricated by the MEMS technology. The transmission of the ring hole array metamaterial and the noise equivalent power of the metamaterial detector at different frequencies are tested. The results show that the transmittance of the fabricated ring hole array metamaterial is greater than 40% at 0.25–0.65 THz, and bandpass filtering is realized. When the ring hole array metamaterial and the pyroelectric detector maintain a sufficient distance, the noise equivalent power of the detector at 0.315 THz is 11.29 μW/Hz0.5, which is 6.3% of the 0.1 THz noise equivalent power (outside the bandpass band), so the bandpass detection is achieved. When the ring hole array metamaterial is attached to the detector, the noise equivalent power of the metamaterial detector at 0.315 THz is 4.64 μW/Hz0.5, which is 29.4% that of the detector without the ring hole array metamaterial, so the narrowband detection is achieved. The above conclusions show that the pyroelectric terahertz detector based on the ring hole array metamaterial can realize the bandpass and narrowband detection of specific frequency band in applications such as biological imaging and macromolecular detection.
      Corresponding author: Jing Wei-Xuan, wxjing@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51975466).
    [1]

    Lewis R 2019 J. Phys. D Appl. Phys. 52 433001Google Scholar

    [2]

    Liang Z Q, Liu Z J, Wang T, Jiang Y D, Zheng X, Huang Z H, Wu X F 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Hongkong, China, Auguest 23–28, 2015 p1

    [3]

    Ding S H, Qi L, Li Y D, Wang Q 2011 Opt. Lett. 36 1993Google Scholar

    [4]

    Grant J, Escorcia-Carranza I, Li C, McCrindle I J, Gough J, Cumming D R 2013 Laser Photonics Rev. 7 1043Google Scholar

    [5]

    Kolenov I, Nesterov P, Nesterov I, Lukash A, Bezborodov V, Mizrakhy S 2020 IEEE Ukrainian Microwave Week (UkrMW) Kharkiv, Ukraine, September 21–25, 2020 p866

    [6]

    Liu W, Zhao P G, Wu C S, Liu C H, Yang J B, Zheng L 2019 Food Chem. 293 213Google Scholar

    [7]

    Yu H T, Anthony J F, Vincent P W 2020 Sensors 20 712Google Scholar

    [8]

    Zhang K S, Luo W B, Huang S T, Bai X Y, Shuai Y, Zhao Y, Zeng X Q, Wu C G, Zhao Y, Zeng X Q, Wu C Q, Zhang W 2020 Sensor. Actuat. A Phys. 313 112186Google Scholar

    [9]

    Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289Google Scholar

    [10]

    Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402Google Scholar

    [11]

    Müller R, Gutschwager B, Hollandt J, Kehrt M, Monte C, Müller R, Steiger A 2015 J. Infrared Millim. Te. 36 654Google Scholar

    [12]

    Deng T, Zhang Z H, Liu Y X, Wang Y G, Su F, Li S S, Zhang Y, Li H, Chen H J, Zhao Z R, Li Y, Liu Z W 2019 Nano Lett. 19 1494Google Scholar

    [13]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 47802Google Scholar

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 47802Google Scholar

    [14]

    Devi K M, Sarma A K, Chowdhury D R, Kumar G 2017 Opt. Express 25 10484Google Scholar

    [15]

    Lv T T, Dong G H, Qin C H, Qu J, Lv B, Li W J, Zhu Z, Li Y X, Guan C Y, Shi J H 2021 Opt. Express 29 5437Google Scholar

    [16]

    Hoof N, Huurne S, Vervuurt R, Bol A A, Rivas J G 2019 APL Photonics 4 036104Google Scholar

    [17]

    Zi J C, Xu Q, Wang Q, Tian C X, Li Y F, Zhang X X, Han J G, Zhang W 2018 Appl. Phys. Lett. 113 101104Google Scholar

    [18]

    Kuznetsov S A, Paulish A G, Navarro-Cía M, Arzhannikov A V 2016 Sci. Rep. 6 21079Google Scholar

    [19]

    Liu Z J, Liang Z Q, Zheng X, Jiang Y D 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Maison de la Chimie, France, September 1–6, 2019 p1

    [20]

    Zhang K S, Luo W B, Zeng X H, Huang S T, Xie Q, Wan L M, Shuai Y, Wu C H, Zhang W L 2022 IEEE Sensor. J. 22 10381Google Scholar

    [21]

    Suen J Y, Fan K, Montoya J, Bingham C, Padilla W J 2017 Optica 4 276Google Scholar

    [22]

    Tan X C, Li J Y, Yang A, Liu H, Yi F 2018 Conference on Lasers and Electro-Optics (CLEO) San Jose Convention Center, United States, May, 13–18, 2018 p4

    [23]

    Ranacher C, Consani C, Tortschanoff A, Rauter L, Jakoby B 2019 Sensors 19 2513Google Scholar

    [24]

    Ebrahim S, Elshaer A, Soliman M, Tayl M 2016 Sensor. Actuat. A Phys. 238 389Google Scholar

    [25]

    Han F Y, Liu P K 2020 Adv. Opt. Mater. 8 1901331Google Scholar

    [26]

    Wang B X, Wang G Z, Wang L L, Zhai X 2016 IEEE Photonic. Tech. Lett. 28 307Google Scholar

    [27]

    Guo W L, Dong Z, Xu Y J, Liu C L, Wei D C, Zhang L B, Shi X Y, Guo C, Xu H, Chen G, Wang L, Zhang K, Chen X S, Lu W 2020 Adv. Sci. 7 1902699Google Scholar

    [28]

    Rodrigo S G, Martín-Moreno L 2016 Opt. Lett. 41 293Google Scholar

    [29]

    Xia S, Yang D X, Li T, Liu X, Wang J 2014 Opt. Lett. 39 1270Google Scholar

    [30]

    Wu Z R, Wang L, Peng Y T, Young A, Seraphin S, Hao X 2008 J. Appl. Phys. 103 56

    [31]

    Wang Y, Cui Z J, Zhu D Y, Zhang X B, Qian L 2018 Opt. Express 26 15343Google Scholar

  • 图 1  圆环孔阵列超材料结构设计图 (a) 俯视图; (b) 左视图

    Figure 1.  Diagram of an Au ring hole array metamaterial structure: (a) Top view; (b) left view.

    图 2  不同结合方式的圆环孔阵列超材料热释电太赫兹探测器原理图 (a) 带通超材料探测器; (b) 窄带超材料探测器

    Figure 2.  Schematic diagram of ring hole array metamaterial pyroelectric terahertz detectors with different combinations: (a) Bandpass metamaterial detector; (b) narrowband metamaterial detector.

    图 3  圆环孔阵列超材料热释电太赫兹探测器的制备 (a)制备工艺流程图; (b) 带通超材料探测器; (c) 窄带超材料探测器

    Figure 3.  Fabrication of ring hole array metamaterial pyroelectric terahertz detector: (a) Fabrication process flow chart; (b) bandpass metamaterial detector; (c) narrowband metamaterial detector.

    图 4  实验测试示意图 (a) 太赫兹时域光谱仪Advantest TAS7500TS实验测量示意图; (b) 频域反射式测试光路示意图

    Figure 4.  Schematic diagram of test: (a) Experimental measurement of terahertz time-domain spectrometer Advantest TAS7500 TS; (b) frequency domain reflectometry test system.

    图 5  不同特征参数下圆环孔阵列超材料HFSS仿真透射曲线 (a) 内径r; (b) 外径R; (c) 周期P; (d) 基底厚度T

    Figure 5.  HFSS simulation transmission curve of ring hole array metamaterials under different characteristic parameters: (a) Inner diameter; (b) outer diameter; (c) period; (d) the thickness of the substrate.

    图 6  圆环孔阵列超材料的性能与表征 (a) 0.1—1.3 THz波段HFSS仿真与时域光谱实验的透射率曲线; (b) 圆环孔阵列超材料光学显微图

    Figure 6.  Test properties of the ring hole array metamaterial: (a) 0.1–1.3 THz transmission curve; (b) optical micrograph of the ring hole array metamaterial.

    图 7  窄带超材料探测器和碳纳米管吸收特性 (a) 窄带超材料探测器与碳纳米管吸收层的吸收率曲线; (b) 窄带太赫兹吸收器原理图; (c) 125—250 μm石英厚度下的窄带太赫兹吸收器吸收特性; (d) 吸收峰频率随石英厚度的变化规律

    Figure 7.  Narrowband terahertz detector and carbon nanotube absorption properties: (a) Absorption curve of narrowband terahertz detector and carbon nanotube absorber; (b) schematic of the Narrowband terahertz absorber; (c) absorption characteristics of narrowband metamaterial absorber at 125–250 μm quartz thickness; (d) variation of absorption peak frequency with quartz thickness.

    表 1  热释电太赫兹探测器和带通超材料探测器在0.1 THz和0.315 THz频率下性能对比

    Table 1.  Performance comparison of the pyroelectric terahertz detector and the bandpass metamaterial detector at frequencies of 0.1 THz and 0.315 THz.

    探测器类型0.315 THz0.1 THz
    VN/μVVR/μVNEP/(μW·Hz–0.5)VN/μVVR/μVNEP/(μW·Hz–0.5)
    热释电太赫兹探测器2.96220.015.803.03220.016.17
    带通超材料探测器1.06110.311.290.956.2179.94
    DownLoad: CSV

    表 2  热释电太赫兹探测器和窄带超材料探测器在0.1 THz和0.315 THz频率下性能对比

    Table 2.  Performance comparison of the pyroelectric terahertz detector and the narrowband metamaterial detector at frequencies of 0.1 THz and 0.315 THz.

    探测器类型0.315 THz0.1 THz
    VN/μVVR/μVNEP/(μW·Hz–0.5)VN/μVVR/μVNEP/(μW·Hz–0.5)
    热释电
    太赫兹探测器
    2.96220.015.803.03220.016.17
    窄带
    超材料探测器
    1.03260.64.641.0248.524.70
    DownLoad: CSV
  • [1]

    Lewis R 2019 J. Phys. D Appl. Phys. 52 433001Google Scholar

    [2]

    Liang Z Q, Liu Z J, Wang T, Jiang Y D, Zheng X, Huang Z H, Wu X F 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Hongkong, China, Auguest 23–28, 2015 p1

    [3]

    Ding S H, Qi L, Li Y D, Wang Q 2011 Opt. Lett. 36 1993Google Scholar

    [4]

    Grant J, Escorcia-Carranza I, Li C, McCrindle I J, Gough J, Cumming D R 2013 Laser Photonics Rev. 7 1043Google Scholar

    [5]

    Kolenov I, Nesterov P, Nesterov I, Lukash A, Bezborodov V, Mizrakhy S 2020 IEEE Ukrainian Microwave Week (UkrMW) Kharkiv, Ukraine, September 21–25, 2020 p866

    [6]

    Liu W, Zhao P G, Wu C S, Liu C H, Yang J B, Zheng L 2019 Food Chem. 293 213Google Scholar

    [7]

    Yu H T, Anthony J F, Vincent P W 2020 Sensors 20 712Google Scholar

    [8]

    Zhang K S, Luo W B, Huang S T, Bai X Y, Shuai Y, Zhao Y, Zeng X Q, Wu C G, Zhao Y, Zeng X Q, Wu C Q, Zhang W 2020 Sensor. Actuat. A Phys. 313 112186Google Scholar

    [9]

    Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289Google Scholar

    [10]

    Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402Google Scholar

    [11]

    Müller R, Gutschwager B, Hollandt J, Kehrt M, Monte C, Müller R, Steiger A 2015 J. Infrared Millim. Te. 36 654Google Scholar

    [12]

    Deng T, Zhang Z H, Liu Y X, Wang Y G, Su F, Li S S, Zhang Y, Li H, Chen H J, Zhao Z R, Li Y, Liu Z W 2019 Nano Lett. 19 1494Google Scholar

    [13]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 47802Google Scholar

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 47802Google Scholar

    [14]

    Devi K M, Sarma A K, Chowdhury D R, Kumar G 2017 Opt. Express 25 10484Google Scholar

    [15]

    Lv T T, Dong G H, Qin C H, Qu J, Lv B, Li W J, Zhu Z, Li Y X, Guan C Y, Shi J H 2021 Opt. Express 29 5437Google Scholar

    [16]

    Hoof N, Huurne S, Vervuurt R, Bol A A, Rivas J G 2019 APL Photonics 4 036104Google Scholar

    [17]

    Zi J C, Xu Q, Wang Q, Tian C X, Li Y F, Zhang X X, Han J G, Zhang W 2018 Appl. Phys. Lett. 113 101104Google Scholar

    [18]

    Kuznetsov S A, Paulish A G, Navarro-Cía M, Arzhannikov A V 2016 Sci. Rep. 6 21079Google Scholar

    [19]

    Liu Z J, Liang Z Q, Zheng X, Jiang Y D 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Maison de la Chimie, France, September 1–6, 2019 p1

    [20]

    Zhang K S, Luo W B, Zeng X H, Huang S T, Xie Q, Wan L M, Shuai Y, Wu C H, Zhang W L 2022 IEEE Sensor. J. 22 10381Google Scholar

    [21]

    Suen J Y, Fan K, Montoya J, Bingham C, Padilla W J 2017 Optica 4 276Google Scholar

    [22]

    Tan X C, Li J Y, Yang A, Liu H, Yi F 2018 Conference on Lasers and Electro-Optics (CLEO) San Jose Convention Center, United States, May, 13–18, 2018 p4

    [23]

    Ranacher C, Consani C, Tortschanoff A, Rauter L, Jakoby B 2019 Sensors 19 2513Google Scholar

    [24]

    Ebrahim S, Elshaer A, Soliman M, Tayl M 2016 Sensor. Actuat. A Phys. 238 389Google Scholar

    [25]

    Han F Y, Liu P K 2020 Adv. Opt. Mater. 8 1901331Google Scholar

    [26]

    Wang B X, Wang G Z, Wang L L, Zhai X 2016 IEEE Photonic. Tech. Lett. 28 307Google Scholar

    [27]

    Guo W L, Dong Z, Xu Y J, Liu C L, Wei D C, Zhang L B, Shi X Y, Guo C, Xu H, Chen G, Wang L, Zhang K, Chen X S, Lu W 2020 Adv. Sci. 7 1902699Google Scholar

    [28]

    Rodrigo S G, Martín-Moreno L 2016 Opt. Lett. 41 293Google Scholar

    [29]

    Xia S, Yang D X, Li T, Liu X, Wang J 2014 Opt. Lett. 39 1270Google Scholar

    [30]

    Wu Z R, Wang L, Peng Y T, Young A, Seraphin S, Hao X 2008 J. Appl. Phys. 103 56

    [31]

    Wang Y, Cui Z J, Zhu D Y, Zhang X B, Qian L 2018 Opt. Express 26 15343Google Scholar

  • [1] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [3] Li Hang, Chen Ping, Tian Jin-Shou, Xue Yan-Hua, Wang Jun-Feng, Gou Yong-Sheng, Zhang Min-Rui, He Kai, Xu Xiang-Yan, Sai Xiao-Feng, Li Ya-Hui, Liu Bai-Yu, Wang Xiang-Lin, Xin Li-Wei, Gao Gui-Long, Wang Tao, Wang Xing, Zhao Wei. High time-resolution detector based on THz pulse accelerating and scanning electron beam. Acta Physica Sinica, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [4] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [5] Hui Zhan-Qiang, Gao Li-Ming, Liu Rui-Hua, Han Dong-Dong, Wang Wei. Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth. Acta Physica Sinica, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [6] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [7] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] Wang Xin, Wang Jun-Lin. Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band. Acta Physica Sinica, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [9] Research of a THz accelerating and scanning high time resolution detector. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210871
    [10] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [11] Dual-core Negative Curvature Fiber-based Terahertz Polarization Beam Splitter with Ultra-low Loss and Wide Bandwidth. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211650
    [12] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [13] Niu Qing-Chen, Gou Jun, Wang Jun, Jiang Ya-Dong. Absorption enhancement of terahertz wave in microbolometers by titanium disk array. Acta Physica Sinica, 2019, 68(20): 208501. doi: 10.7498/aps.68.20190902
    [14] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [15] Dai Bing, Wang Peng, Zhou Yu, You Cheng-Wu, Hu Jiang-Sheng, Yang Zhen-Gang, Wang Ke-Jia, Liu Jin-Song. Wavelet transform in the application of three-dimensional terahertz imaging for internal defect detection. Acta Physica Sinica, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [16] Zhang Jing-Shui, Kong Ling-Qin, Dong Li-Quan, Liu Ming, Zuo Jian, Zhang Cun-Lin, Zhao Yue-Jin. Diffusion part in terahertz complementary metal oxide semiconductor transistor detector model. Acta Physica Sinica, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [17] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [18] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [19] Zhang Rong, Guo Xu-Guang, Cao Jun-Cheng. Simulation and optimization of grating optical coupling of terahertz quantum well photodetector. Acta Physica Sinica, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [20] Ma Shi-Hua, Shi Yu-Lei, Xu Xin-Long, Yan Wei, Yang Yu-Ping, Wang Li. Low-frequency collective vibrational modes of asparagine by terahertz time-domain spectroscopy. Acta Physica Sinica, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
Metrics
  • Abstract views:  2484
  • PDF Downloads:  65
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2022
  • Accepted Date:  20 November 2022
  • Available Online:  21 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回