Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-dimensional modeling of radiation belt electron pitch-angle diffusion coefficients caused by plasmaspheric hiss

Wang Jing-Zhi Ma Xin Xiang Zheng Gu Xu-Dong Jiao Lu-Huai Lei Liang-Jian Ni Bin-Bin

Citation:

Multi-dimensional modeling of radiation belt electron pitch-angle diffusion coefficients caused by plasmaspheric hiss

Wang Jing-Zhi, Ma Xin, Xiang Zheng, Gu Xu-Dong, Jiao Lu-Huai, Lei Liang-Jian, Ni Bin-Bin
PDF
HTML
Get Citation
  • Plasmaspheric hiss is an important wave mode in the Earth’s radiation belts. Hiss waves can scatter energetic electrons into loss cones to precipitate into the atmosphere, and therefore become an important source of fluctuations, leading the radiation belt to lose electrons . As a function of electron energy and pitch angle, the diffusion coefficient of hiss waves for radiation belt electrons is significantly influenced by the solar wind and geomagnetic activity, and also strongly depends on the spatial position, the background magnetic field, and the plasma density distribution. In order to quickly obtain the diffusion coefficients of hiss waves on electrons in the radiation belt for modelling the global dynamics of the radiation belt, we systematically calculate the diffusion coefficients of hiss waves on electrons in the radiation belt by using the full diffusion code (FDC), and build a four-dimensional matrix database of diffusion coefficients for the spatial region L = 1.5–6, the cold plasma parameter α* = 3–30, electron energy 1 keV–10 MeV, and electron throw angle 0°–90°. According to the database, we can quickly obtain diffusion coefficients with different L and α* values through linear interpolations. By comparing the errors between diffusion coefficients calculated by the FDC code and those linearly interpolated from the diffusion coefficient database, the accuracies of interpolated coefficients are validated, showing that most of the errors lie in 10%. The four-dimensional database of hiss wave pitch angle diffusion coefficients for radiation belt electrons and the validated linear interpolation method established in this paper can significantly reduce the time required to obtain global information about hiss wave diffusion coefficients, thereby rapidly improving the computational efficiency of carrying out simulations of spatial and temporal changes in the radiation belts over long periods of time, which in turn is expected to provide favourable conditions for the development of dynamic forecasting models of the Earth's radiation belts.
      Corresponding author: Ma Xin, whumaxin@whu.edu.cn ; Xiang Zheng, xiangzheng@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42025404, 42188101, 42174190, 41904143, 42274199, 42204160), the Pre-research Projects on Civil Aerospace Technologies (Grant Nos. D020308, D020104) funded by the China National Space Administration, and the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant Nos. XDB41000000) and the Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences (Grant No. DQXX2021-04), and the Fundamental Research Funds for the Central Universities (Grant No. 2042021kf0016).
    [1]

    Ni B, Gu X, Fu S, Xiang Z, Lou Y 2017 J. Geophys. Res. Space Phys. 122 3342Google Scholar

    [2]

    Lou Y, Cao X, Ni B, Tu W, Gu X, Fu S, Xiang Z, Ma X 2021 Geophys. Res. Lett. 48 e2020GL092208

    [3]

    Thorne R, Ni B, Tao X, Richard B, Nigel P 2010 Nature 467 943Google Scholar

    [4]

    Guo D, Xiang Z, Ni, B, Cao X, Fu S, Zhou R, Gu X, Yi J, Guo Y, Jiao L 2021 Geophys. Res. Lett. 48 e2021GL095714

    [5]

    Guo Y, Ni B, Fu S, Wang D, Shprits Y, Zhelavskaya I, Feng M, Guo D 2022 J. Geophys. Res. 127 e2021JA029926

    [6]

    He Q, Liu S, Xiao F, Gao Z, Li T, Shang X, Zhou Q, Yang C, He L 2022 Sci. China Technol. Sci. 65 1

    [7]

    He J, Jin Y, Xiao F, He Z, Yang C, Xie Y, He Q, Wang C, Shang X, Liu S, Zhou Q, Zhang S 2021 Sci. China Technol. Sci. 64 890

    [8]

    Liu S, Xie Y, Zhang S, Shang X, Yang C, Zhou Q, He Y, Xiao F 2020 Geophys. Res. Lett. 47 e2020GL089994

    [9]

    Ni B, Bortnik J, Thorne R, Ma Q, Chen L 2013 J. Geophys. Res. Space Phys. 118 7740Google Scholar

    [10]

    Ni B, Li W, Thorne R, Bortnik J, Ma Q, Chen L, Kletzing C, Kurth W, Hospodarsky G, Reeves G, Spence H, Blake J, Fennell J, Claudepierre S 2014 Geophys. Res. Lett. 41 1854Google Scholar

    [11]

    Zhang W, Fu S, Gu X, Ni B, Xiang Z, Summers D, Zou Z, Cao X, Lou Y, Hua M 2018 Geophys. Res. Lett. 45 4618Google Scholar

    [12]

    Fu S, Yi J, Ni B, Zhou R, Hu Z, Cao X, Gu X, Guo D 2020 Geophys. Res. Lett. 47 e2020GL086963

    [13]

    Ni B, Cao X, Zou Z, Zhou C, Gu X, Bortnil J, Zhang J, Fu S, Zhao Z, Shi R, Xie L 2015 J. Geophys. Res. Space Phys. 120 7357Google Scholar

    [14]

    Xiang Z, Tu W, Li X, Ni B, Morley S, Baker D 2017 J. Geophys. Res. Space Phys. 122 9858Google Scholar

    [15]

    Xiang Z, Tu W, Ni B, Henderson M, Cao X 2018 Geophys. Res. Lett. 45 8035Google Scholar

    [16]

    Fu S, Ni B, Lou Y, Bortnik J, Ge Y, Tao X, Cao X, Gu X, Xiang Z, Zhang W, Zhang Y, Wang Q 2018 Geophys. Res. Lett. 45 10866

    [17]

    Lou Y, Cao, X, Ni, B, Wu M, Zhang T 2021 J. Geophys. Res. Space Phys. 126 e2021JA029966

    [18]

    Zhou R, Ni B, Fu S, Teng S, Tao X, Hu Z, Guo J, Hua M, Yi J, Guo Y, Jiao L, Ma X, Gu X 2022 J. Geophys. Res. Space Phys. 127 e2021JA030093

    [19]

    Yang C, Wang Z, Xiao F, He Z, Xie Y, Zhang S, He Y, Liu S, Zhou Q 2022 Sci. China Technol. Sci. 65 131

    [20]

    Guan C, Shang X, Xie Y, Yang C, Zhang S, Liu S, Xiao F 2020 Sci. China Technol. Sci. 63 2369Google Scholar

    [21]

    Liu S, Zhang Jian, Chen L, Zhu H, He Zhao 2018 Geophys. Res. Lett. 45 10138

    [22]

    Hua M, Li W, Ni B, Ma Q, Green A, Shen X, Claudepierre S, Bortnik J, Gu X, Fu S, Xiang Z, Reeves G 2020 Nat. Comm. 11 4847Google Scholar

    [23]

    Ni B, Hua M, Gu X, Fu S, Xiang Z, Cao X, Ma X 2021 Sci. China Earth Sci. 65 391

    [24]

    Xiang Z, Lin X, Chen W, Wang Y, Lu P, Gong W, Ma W, Hua M, Liu Y 2021 Chin. J. Geophys. 64 3860

    [25]

    刘阳希子, 项正, 郭建广, 顾旭东, 付松, 周若贤, 花漫, 朱琪, 易娟, 倪彬彬 2021 物理学报 70 149401Google Scholar

    Liu Y X Z, Xiang Z, Guo J G, Gu X D, Fu S, Zhou R X, Hua M, Zhu Q, Yi J, Ni B B 2021 Acta Phys. Sin. 70 149401Google Scholar

    [26]

    Liu Y, Xiang Z, Ni B, Li X, Zhang K, Fu S, Gu X, Liu J, Cao X 2022 Geophys. Res. Lett. 49 e2021GL097443

    [27]

    Gu X, Peng R, Wang S, Ni B, Luo F, Li G, Li Z 2022 IEEE Trans. Geosci. Remote Sens. 60 1

    [28]

    Li W, Ma Q, Thorne R, Bortnil J, Kletzing C, Kurth W, Hospodarsky G, Nishimura Y 2015 J. Geophys. Res. Space Phys. 120 3393Google Scholar

    [29]

    项正, 谈家强, 倪彬彬, 顾旭东, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 贺丰明, 郑程耀, 殷倩, 王豪 2017 物理学报 66 039401Google Scholar

    Xiang Z, Tan J Q, Ni B B, Gu X D, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, He F M, Zheng C Y, Yin Q, Wang H 2017 Acta Phys. Sin. 66 039401Google Scholar

    [30]

    Meredith N, Horne R, Kersten T, Li W, Bortnik J, Sicard A, Yearby K 2018 J. Geophys. Res. Space Phys. 123 4526Google Scholar

    [31]

    Kim K, Shprits Y 2019 J. Geophys. Res. Space Phys. 124 1904Google Scholar

    [32]

    Zhang W, Ni B, Huang H, Summers D, Fu S, Xiang Z, Gu X, Cao X, Lou Y, Hua M 2019 Geophys. Res. Lett. 46 5670Google Scholar

    [33]

    Chen L, Li W, Bortnik J, Thorne R 2012 b Geophys. Res. Lett. 39 L08111

    [34]

    Cao X, Ni B, Summers D, Fu S, Shi R 2020 Astrophys. J. 896 118Google Scholar

    [35]

    Ma X, Cao X, Ni B, Zhu Q, Xiang Z 2021 Astrophys. J. 916 14Google Scholar

    [36]

    Bortnik J, Li W, Thome R, Angelopoulos V, Cully C, Bonnell J, Contel O, Roux A 2009 Science 324 775Google Scholar

    [37]

    Chen L, Bortnik J, Li W, Thorne R, Horne R 2012 J. Geophys. Res. 117 A05201

    [38]

    Chen L, Thorne R, Bortnik J, Li W, Horne R, Reeves G, Kletzing C, Kurth W, Hospodarsky G, Spence H, Blake J, Fennell J 2014 Geophys. Res. Lett. 41 5702Google Scholar

    [39]

    Lyons L, Thorne R 1973 J. Geophys. Res. 78 2142Google Scholar

    [40]

    Meredith N, Horne R, Glauert S, Baker D, Kanekal S, Albert J 2009 J. Geophys. Res. 114 A03222

    [41]

    Xiang Z, Li X, Ni B, Temerin M, Zhang K, Khoo L 2020 J. Geophys. Res. Space Phys. 125 e2020JA028042

    [42]

    Zhu Q, Cao X, Gu X, Ni B, Xiang Z, Fu S, Summers D, Hua M, Lou Y, Ma X, Guo Y, Guo D, Zhang W 2021 J. Geophys. Res. Space Phys. 126 e2020JA029057

    [43]

    Ma Q, Li W, Thorne R, Bortnik J, Reeves G, Kletzing C, Kurth W, Hospodarsky G, Spence H, Baker D, Blake J, Fennell J, Claudepierre S, Angelopoulos V 2016 J. Geophys. Res. Space Phys. 121 11737

    [44]

    Reeves G, Friedel R, Larsen B, Skoug R, Funsten H, Claudepierre S, Fennell J, Turner D, Spence H, Blake J, Baker D 2016 J. Geophys. Res. Space Phys. 121 397Google Scholar

    [45]

    Ripoll J, Reeves G, Cunningham G, Loridan V, Denton M, Santolik O, Kurth W, Kletzing C, Turner D, Henderson M, Ukhorskiy A 2016 Geophys. Res. Lett. 43 5616Google Scholar

    [46]

    Zhao H, Ni B, Li X, Baker D, Johnston W, Zhang W, Xiang Z, Gu X, Jaynes A, Kanekal S, Blake J, Claudepierre S, Temerin M, Funsten H, Reeves G, Boyd A 2019 Nat. Phys. 15 367Google Scholar

    [47]

    Ni B, Huang H, Zhang W, Gu X, Zhao H, Li X, Baker D, Fu S, Xiang Z, Cao X 2019 Geophys. Res. Lett. 46 2019GL082032

    [48]

    De S, Li W, Thorne R, Ma Q, Bortnik J, Kletzing C, Kurth W, Hospodarsky G, Spence H, Reeves G, Blake J, Fennell J 2015 J. Geophys. Res. Space Phys. 120 8681Google Scholar

    [49]

    Li W, Shen X, Ma Q, Capannolo L, Shi R, Redmon J, Rodriguez J, Reeves G, Kletzing C, Kurth W, Hospodarsky G 2019 Geophys. Res. Lett. 46 3615Google Scholar

    [50]

    Breneman A, Halford A, Millan R, Woodger L, Zhang X, Sandhu J, Capannolo L, Li W, Ma Q, Cully C, Murphy K, Brito T, Elliott S 2020 J. Geophys. Res. Space Phys. 125 e2020JA028097

    [51]

    Mourenas D, Ripoll J 2012 J. Geophys. Res. 117 A01204

    [52]

    Thorne R, Li W, Ni B, Ma Q, Bortnik J, Baker D, Spence H, Reeves G, Henderson M, Kletzing C, Kurth W, Hospodarsky G, Turner D, Angelopoulos V 2013 Geophys. Res. Lett. 40 3507Google Scholar

    [53]

    Mourenas D, Ma Q, Artemyev A, Li W 2017 Geophys. Res. Lett. 44 3009Google Scholar

    [54]

    Claudepierre S, Ma Q, Bortnik J, O’Brien T, Fennell J, Blake J 2020 Geophys. Res. Lett. 47 e2019GL086056

    [55]

    Ni B, Thorne R, Shprits Y, Bortnik J 2008 Geophys. Res. Lett. 35 L11106Google Scholar

    [56]

    Xiao F, Su Z, Zheng H, Wang S 2009 J. Geophys. Res. 114 A03210

    [57]

    Xiao F, Su Z, Zheng H, Wang S 2010 J. Geophys. Res. 115 A05216

    [58]

    Albert 2007 J. Geophys. Res. 112 A12202

    [59]

    Lyons 1974 J. Plasma Physics 12 417Google Scholar

    [60]

    Summers D, Ni B, Meredith N 2007 J. Geophys. Res.112 A04206

    [61]

    Meredith N, Horne R, Clilverd M, Horsfall D, Thorne R, Anderson R 2006 J. Geophys. Res. 111 A09217

    [62]

    Sheeley B, Moldwin M, Rassoul H, Anderson R 2001 J. Geophys. Res. 106 25631Google Scholar

  • 图 1  (a) 不同的Lα*条件下对应等离子体密度的数值; (b) 不同Lα*的值, 蓝线表示位于等离子体层以内, 黄线表示位于等离子体层以外

    Figure 1.  (a) The values of the density at different L and α* values; (b) the values of α* at different L, the blue line indicates inside the plasmapause and the yellow line indicates outside the plasmapause.

    图 2  L = 2时常数传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Figure 2.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with constant wave normal angle model at L = 2, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 3  L = 3时固定传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Figure 3.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with constant wave normal angle model at L = 3, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 4  L = 4时常数传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Figure 4.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with constant wave normal angle model at L = 4, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 5  L = 5时固定传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Figure 5.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with constant wave normal angle model at L = 5, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 7  L = 3时随纬度变化传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Figure 7.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle$ of hiss waves for electrons with latitudinally varying wave normal angle model at L = 3, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 8  L = 4时随纬度变化传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Figure 8.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with latitudinally varying wave normal angle model at L = 4, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 6  L = 2时随纬度变化传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Figure 6.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with latitudinally varying wave normal angle model at L = 2, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 9  L = 5时随纬度变化传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)对应不同α*条件下的散射系数

    Figure 9.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with latitudinally varying wave normal angle model at L = 5, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 10  (a1)—(a3) 当α* = 4时, L = 3.25, L = 4.35, L = 5.55处计算得到的嘶声波散射系数; (b1)—(b3) 通过数据库进行线性插值计算得到的嘶声波散射系数; (c1)—(c3) 二者相对误差分析

    Figure 10.  (a1)–(a3) The diffusion coefficients of hiss waves calculated at L = 3.25, L = 4.35, L = 5.55 when α* = 3; (b1)–(b3) the hiss wave diffusion coefficients calculated by linear interpolation from the database; (c1)–(c3) the relative error analysis.

    图 11  (a)—(c) 当α* = 4时, L = 3.25, L = 4.35, L = 5.55处选取能级为50 keV, 200 keV, 400 keV以及700 keV的散射系数对比结果; (d)—(f) 数值的比值, 虚线表示FDC计算结果, 点画线表示线性插值结果, 不同颜色代表不同能级

    Figure 11.  (a1)–(a3) Comparison of the diffusion coefficients at α* = 4, L = 3.25, L = 4.35, L = 5.55 for selected energy levels of 50 keV, 200 keV, 400 keV and 700 keV; (d)–(f) the ratio of values, the dashed line shows the result of the FDC calculation, the dotted lines shows the result of linear interpolation, different colors represent different energy levels.

    图 12  (a1)—(a3) 当L = 4时, α* = 3.25, α* = 4.35, α* = 5.55处计算得到的嘶声波散射系数; (b1)—(b3) 通过数据库进行线性插值计算得到的嘶声波散射系数; (c1)—(c3) 表示对二者进行相对误差分析

    Figure 12.  (a1)–(a3) The diffusion coefficients of hiss waves calculated at α* = 3.25, α* = 4.35, α* = 5.55 when L = 4; (b1)–(b3) the hiss wave diffusion coefficients calculated by linear interpolation from the database; (c1)–(c3) the relative error analysis.

    图 13  (a)—(c) 当L = 4时, α* = 3.25, α* = 4.35, α* = 5.55处选取能级为50 keV, 200 keV, 400 keV和700 keV的散射系数对比结果; (d)—(f) 数值的比值, 虚线表示FDC计算结果, 点画线表示线性插值结果, 表示不同颜色代表不同能级

    Figure 13.  (a)–(c) The comparison of the diffusion coefficients at α* = 3.25, α* = 4.35, α* = 5.55 for L = 4 for selected energy levels of 50 keV, 200 keV, 400 keV and 700 keV; (d)–(f) the ratio of values, the dashed line shows the result of the FDC calculation, the dotted lines shows the result of linear interpolation, different colors represent different energy levels.

    表 1  随纬度变化的传播角模型主要参数

    Table 1.  Parameters of the varying latitudinal wave normal angle model.

    λ/(º)$ \varphi $m/(º)δ$ \varphi $/(º)$ \varphi $/(º)
    0—50150—25
    5—1020150—40
    10—1540200—55
    15—20503015—70
    20—25604030—75
    25—30705050—80
    30—35806065—85
    35—40807075—85
    40—45808080—85
    DownLoad: CSV

    表 2  不同L的磁纬度选取范围

    Table 2.  Range of magnetic latitude at different L values

    Lλ/(°)
    1.5—2.20—30
    2.3—2.90—40
    3.0—6.00—45
    DownLoad: CSV
  • [1]

    Ni B, Gu X, Fu S, Xiang Z, Lou Y 2017 J. Geophys. Res. Space Phys. 122 3342Google Scholar

    [2]

    Lou Y, Cao X, Ni B, Tu W, Gu X, Fu S, Xiang Z, Ma X 2021 Geophys. Res. Lett. 48 e2020GL092208

    [3]

    Thorne R, Ni B, Tao X, Richard B, Nigel P 2010 Nature 467 943Google Scholar

    [4]

    Guo D, Xiang Z, Ni, B, Cao X, Fu S, Zhou R, Gu X, Yi J, Guo Y, Jiao L 2021 Geophys. Res. Lett. 48 e2021GL095714

    [5]

    Guo Y, Ni B, Fu S, Wang D, Shprits Y, Zhelavskaya I, Feng M, Guo D 2022 J. Geophys. Res. 127 e2021JA029926

    [6]

    He Q, Liu S, Xiao F, Gao Z, Li T, Shang X, Zhou Q, Yang C, He L 2022 Sci. China Technol. Sci. 65 1

    [7]

    He J, Jin Y, Xiao F, He Z, Yang C, Xie Y, He Q, Wang C, Shang X, Liu S, Zhou Q, Zhang S 2021 Sci. China Technol. Sci. 64 890

    [8]

    Liu S, Xie Y, Zhang S, Shang X, Yang C, Zhou Q, He Y, Xiao F 2020 Geophys. Res. Lett. 47 e2020GL089994

    [9]

    Ni B, Bortnik J, Thorne R, Ma Q, Chen L 2013 J. Geophys. Res. Space Phys. 118 7740Google Scholar

    [10]

    Ni B, Li W, Thorne R, Bortnik J, Ma Q, Chen L, Kletzing C, Kurth W, Hospodarsky G, Reeves G, Spence H, Blake J, Fennell J, Claudepierre S 2014 Geophys. Res. Lett. 41 1854Google Scholar

    [11]

    Zhang W, Fu S, Gu X, Ni B, Xiang Z, Summers D, Zou Z, Cao X, Lou Y, Hua M 2018 Geophys. Res. Lett. 45 4618Google Scholar

    [12]

    Fu S, Yi J, Ni B, Zhou R, Hu Z, Cao X, Gu X, Guo D 2020 Geophys. Res. Lett. 47 e2020GL086963

    [13]

    Ni B, Cao X, Zou Z, Zhou C, Gu X, Bortnil J, Zhang J, Fu S, Zhao Z, Shi R, Xie L 2015 J. Geophys. Res. Space Phys. 120 7357Google Scholar

    [14]

    Xiang Z, Tu W, Li X, Ni B, Morley S, Baker D 2017 J. Geophys. Res. Space Phys. 122 9858Google Scholar

    [15]

    Xiang Z, Tu W, Ni B, Henderson M, Cao X 2018 Geophys. Res. Lett. 45 8035Google Scholar

    [16]

    Fu S, Ni B, Lou Y, Bortnik J, Ge Y, Tao X, Cao X, Gu X, Xiang Z, Zhang W, Zhang Y, Wang Q 2018 Geophys. Res. Lett. 45 10866

    [17]

    Lou Y, Cao, X, Ni, B, Wu M, Zhang T 2021 J. Geophys. Res. Space Phys. 126 e2021JA029966

    [18]

    Zhou R, Ni B, Fu S, Teng S, Tao X, Hu Z, Guo J, Hua M, Yi J, Guo Y, Jiao L, Ma X, Gu X 2022 J. Geophys. Res. Space Phys. 127 e2021JA030093

    [19]

    Yang C, Wang Z, Xiao F, He Z, Xie Y, Zhang S, He Y, Liu S, Zhou Q 2022 Sci. China Technol. Sci. 65 131

    [20]

    Guan C, Shang X, Xie Y, Yang C, Zhang S, Liu S, Xiao F 2020 Sci. China Technol. Sci. 63 2369Google Scholar

    [21]

    Liu S, Zhang Jian, Chen L, Zhu H, He Zhao 2018 Geophys. Res. Lett. 45 10138

    [22]

    Hua M, Li W, Ni B, Ma Q, Green A, Shen X, Claudepierre S, Bortnik J, Gu X, Fu S, Xiang Z, Reeves G 2020 Nat. Comm. 11 4847Google Scholar

    [23]

    Ni B, Hua M, Gu X, Fu S, Xiang Z, Cao X, Ma X 2021 Sci. China Earth Sci. 65 391

    [24]

    Xiang Z, Lin X, Chen W, Wang Y, Lu P, Gong W, Ma W, Hua M, Liu Y 2021 Chin. J. Geophys. 64 3860

    [25]

    刘阳希子, 项正, 郭建广, 顾旭东, 付松, 周若贤, 花漫, 朱琪, 易娟, 倪彬彬 2021 物理学报 70 149401Google Scholar

    Liu Y X Z, Xiang Z, Guo J G, Gu X D, Fu S, Zhou R X, Hua M, Zhu Q, Yi J, Ni B B 2021 Acta Phys. Sin. 70 149401Google Scholar

    [26]

    Liu Y, Xiang Z, Ni B, Li X, Zhang K, Fu S, Gu X, Liu J, Cao X 2022 Geophys. Res. Lett. 49 e2021GL097443

    [27]

    Gu X, Peng R, Wang S, Ni B, Luo F, Li G, Li Z 2022 IEEE Trans. Geosci. Remote Sens. 60 1

    [28]

    Li W, Ma Q, Thorne R, Bortnil J, Kletzing C, Kurth W, Hospodarsky G, Nishimura Y 2015 J. Geophys. Res. Space Phys. 120 3393Google Scholar

    [29]

    项正, 谈家强, 倪彬彬, 顾旭东, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 贺丰明, 郑程耀, 殷倩, 王豪 2017 物理学报 66 039401Google Scholar

    Xiang Z, Tan J Q, Ni B B, Gu X D, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, He F M, Zheng C Y, Yin Q, Wang H 2017 Acta Phys. Sin. 66 039401Google Scholar

    [30]

    Meredith N, Horne R, Kersten T, Li W, Bortnik J, Sicard A, Yearby K 2018 J. Geophys. Res. Space Phys. 123 4526Google Scholar

    [31]

    Kim K, Shprits Y 2019 J. Geophys. Res. Space Phys. 124 1904Google Scholar

    [32]

    Zhang W, Ni B, Huang H, Summers D, Fu S, Xiang Z, Gu X, Cao X, Lou Y, Hua M 2019 Geophys. Res. Lett. 46 5670Google Scholar

    [33]

    Chen L, Li W, Bortnik J, Thorne R 2012 b Geophys. Res. Lett. 39 L08111

    [34]

    Cao X, Ni B, Summers D, Fu S, Shi R 2020 Astrophys. J. 896 118Google Scholar

    [35]

    Ma X, Cao X, Ni B, Zhu Q, Xiang Z 2021 Astrophys. J. 916 14Google Scholar

    [36]

    Bortnik J, Li W, Thome R, Angelopoulos V, Cully C, Bonnell J, Contel O, Roux A 2009 Science 324 775Google Scholar

    [37]

    Chen L, Bortnik J, Li W, Thorne R, Horne R 2012 J. Geophys. Res. 117 A05201

    [38]

    Chen L, Thorne R, Bortnik J, Li W, Horne R, Reeves G, Kletzing C, Kurth W, Hospodarsky G, Spence H, Blake J, Fennell J 2014 Geophys. Res. Lett. 41 5702Google Scholar

    [39]

    Lyons L, Thorne R 1973 J. Geophys. Res. 78 2142Google Scholar

    [40]

    Meredith N, Horne R, Glauert S, Baker D, Kanekal S, Albert J 2009 J. Geophys. Res. 114 A03222

    [41]

    Xiang Z, Li X, Ni B, Temerin M, Zhang K, Khoo L 2020 J. Geophys. Res. Space Phys. 125 e2020JA028042

    [42]

    Zhu Q, Cao X, Gu X, Ni B, Xiang Z, Fu S, Summers D, Hua M, Lou Y, Ma X, Guo Y, Guo D, Zhang W 2021 J. Geophys. Res. Space Phys. 126 e2020JA029057

    [43]

    Ma Q, Li W, Thorne R, Bortnik J, Reeves G, Kletzing C, Kurth W, Hospodarsky G, Spence H, Baker D, Blake J, Fennell J, Claudepierre S, Angelopoulos V 2016 J. Geophys. Res. Space Phys. 121 11737

    [44]

    Reeves G, Friedel R, Larsen B, Skoug R, Funsten H, Claudepierre S, Fennell J, Turner D, Spence H, Blake J, Baker D 2016 J. Geophys. Res. Space Phys. 121 397Google Scholar

    [45]

    Ripoll J, Reeves G, Cunningham G, Loridan V, Denton M, Santolik O, Kurth W, Kletzing C, Turner D, Henderson M, Ukhorskiy A 2016 Geophys. Res. Lett. 43 5616Google Scholar

    [46]

    Zhao H, Ni B, Li X, Baker D, Johnston W, Zhang W, Xiang Z, Gu X, Jaynes A, Kanekal S, Blake J, Claudepierre S, Temerin M, Funsten H, Reeves G, Boyd A 2019 Nat. Phys. 15 367Google Scholar

    [47]

    Ni B, Huang H, Zhang W, Gu X, Zhao H, Li X, Baker D, Fu S, Xiang Z, Cao X 2019 Geophys. Res. Lett. 46 2019GL082032

    [48]

    De S, Li W, Thorne R, Ma Q, Bortnik J, Kletzing C, Kurth W, Hospodarsky G, Spence H, Reeves G, Blake J, Fennell J 2015 J. Geophys. Res. Space Phys. 120 8681Google Scholar

    [49]

    Li W, Shen X, Ma Q, Capannolo L, Shi R, Redmon J, Rodriguez J, Reeves G, Kletzing C, Kurth W, Hospodarsky G 2019 Geophys. Res. Lett. 46 3615Google Scholar

    [50]

    Breneman A, Halford A, Millan R, Woodger L, Zhang X, Sandhu J, Capannolo L, Li W, Ma Q, Cully C, Murphy K, Brito T, Elliott S 2020 J. Geophys. Res. Space Phys. 125 e2020JA028097

    [51]

    Mourenas D, Ripoll J 2012 J. Geophys. Res. 117 A01204

    [52]

    Thorne R, Li W, Ni B, Ma Q, Bortnik J, Baker D, Spence H, Reeves G, Henderson M, Kletzing C, Kurth W, Hospodarsky G, Turner D, Angelopoulos V 2013 Geophys. Res. Lett. 40 3507Google Scholar

    [53]

    Mourenas D, Ma Q, Artemyev A, Li W 2017 Geophys. Res. Lett. 44 3009Google Scholar

    [54]

    Claudepierre S, Ma Q, Bortnik J, O’Brien T, Fennell J, Blake J 2020 Geophys. Res. Lett. 47 e2019GL086056

    [55]

    Ni B, Thorne R, Shprits Y, Bortnik J 2008 Geophys. Res. Lett. 35 L11106Google Scholar

    [56]

    Xiao F, Su Z, Zheng H, Wang S 2009 J. Geophys. Res. 114 A03210

    [57]

    Xiao F, Su Z, Zheng H, Wang S 2010 J. Geophys. Res. 115 A05216

    [58]

    Albert 2007 J. Geophys. Res. 112 A12202

    [59]

    Lyons 1974 J. Plasma Physics 12 417Google Scholar

    [60]

    Summers D, Ni B, Meredith N 2007 J. Geophys. Res.112 A04206

    [61]

    Meredith N, Horne R, Clilverd M, Horsfall D, Thorne R, Anderson R 2006 J. Geophys. Res. 111 A09217

    [62]

    Sheeley B, Moldwin M, Rassoul H, Anderson R 2001 J. Geophys. Res. 106 25631Google Scholar

  • [1] Lin Mai-Mai, Wang Ming-Yue, Jiang Lei. Propagating characteristics of nonlinear dust acoustic solitary waves in multicomponent dusty plasma. Acta Physica Sinica, 2023, 72(3): 035201. doi: 10.7498/aps.72.20221843
    [2] Li Xiang-Fu, Zhu Xiao-Lu, Jiang Gang. Plasma screening effect on electron-electron interactions. Acta Physica Sinica, 2023, 72(7): 073102. doi: 10.7498/aps.72.20222339
    [3] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] Liu Yang-Xi-Zi, Xiang Zheng, Guo Jian-Guang, Gu Xu-Dong, Fu Song, Zhou Ruo-Xian, Hua Man, Zhu Qi, Yi Juan, Ni Bin-Bin. Scattering effect of very low frequency transmitter signals on energetic electrons in Earth’s inner belt and slot region. Acta Physica Sinica, 2021, 70(14): 149401. doi: 10.7498/aps.70.20202029
    [5] Jiang Wei-Man, Li Yu-Tong, Zhang Zhe, Zhu Bao-Jun, Zhang Yi-Hang, Yuan Da-Wei, Wei Hui-Gang, Liang Gui-Yun, Han Bo, Liu Chang, Yuan Xiao-Xia, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, Wang Chen, Huang Xiu-Guang, Zhang Jie. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions. Acta Physica Sinica, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [6] Liu Sheng-Xing, Li Zheng-Lin. Reflecting and scattering of acoustic wave from sea ices. Acta Physica Sinica, 2017, 66(23): 234301. doi: 10.7498/aps.66.234301
    [7] Xiang Zheng, Tan Jia-Qiang, Ni Bin-Bin, Gu Xu-Dong, Cao Xing, Zou Zheng-Yang, Zhou Chen, Fu Song, Shi Run, Zhao Zheng-Yu, He Feng-Ming, Zheng Cheng-Yao, Yin Qian, Wang Hao. A statistical analysis of the global distribution of plasmaspheric hiss based on Van Allen Probes wave observations. Acta Physica Sinica, 2017, 66(3): 039401. doi: 10.7498/aps.66.039401
    [8] Zhou Lei, Tang Chang-Jian. Interactions of electromagnetic wave and Langmuir wave in an inhomogeneous plasma. Acta Physica Sinica, 2009, 58(12): 8254-8259. doi: 10.7498/aps.58.8254
    [9] Zhang Lei, Dong Quan-Li, Zhao Jing, Wang Shou-Jun, Sheng Zheng-Ming, He Min-Qing, Zhang Jie. Saturation of stimulated Raman scattering in laser-plasma interaction. Acta Physica Sinica, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [10] Han Jiu-Ning, Wang Cang-Long, Li Sheng-Chang, Duan Wen-Shan. The interaction of ion-acoustic solitary waves in a two-dimensional hot ion plasma. Acta Physica Sinica, 2008, 57(10): 6068-6073. doi: 10.7498/aps.57.6068
    [11] Li Bai-Wen, Tian En-Ke. Stimulated trapped electron-acoustic wave scattering and ion-vortices in subcritical plasmas. Acta Physica Sinica, 2007, 56(8): 4749-4761. doi: 10.7498/aps.56.4749
    [12] Xu Miao-Hua, Liang Tian-Jiao, Zhang Jie. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions. Acta Physica Sinica, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [13] Wu Yong-Quan, Jiang Guo-Chang, You Jing-Lin, Hou Huai-Yu, Chen Hui. Raman scattering coefficients of symmetrical stretching modes of microstructural units in sodium silicate melts. Acta Physica Sinica, 2005, 54(2): 961-966. doi: 10.7498/aps.54.961
    [14] He Feng, Yu Wei, Lu Pei-Xiang. Field structure and electron density profile in circularly polarized femtosecond laser interaction with a linear plasma. Acta Physica Sinica, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [15] Wei Qing, Wang Qi, Shi Jie-Long, Chen Yuan-Yuan. . Acta Physica Sinica, 2002, 51(1): 99-103. doi: 10.7498/aps.51.99
    [16] Tang De-Li, Sun Ai-Ping, Qui Xiao-Ming. . Acta Physica Sinica, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [17] YU WEI, XU ZHI-ZHAN, MA JIN-XIU, CHEN RONG-QING. DEVELOPMENT OF THREE-WAVE INTERACTIONS IN A PLASMA BEAT-WAVE ACCELERATOR. Acta Physica Sinica, 1993, 42(3): 431-436. doi: 10.7498/aps.42.431
    [18] FU RONG-TANG, LI LIE-MING, SUN XIN, FU ROU-LI. ELECTRON-PHONON INTERACTION AND NONLINEAR OPTICAL SUSCEPTIBILITY OF POLYMER. Acta Physica Sinica, 1993, 42(3): 422-430. doi: 10.7498/aps.42.422
    [19] Xu Zhi-zhan, Yin Guang-yu, Zhang Yan-zhen, Lin Kang-chun. STIMULATED BRILLOUIN SCATTERING DUE TO LASER-PLASMA INTERACTIONS. Acta Physica Sinica, 1983, 32(4): 481-489. doi: 10.7498/aps.32.481
    [20] He Xian-tu. NON-LINEAR EFFECT ON THE LARGE AMPLITUDE WAVES INTERACTION WITH PARTICLES OF LOW FREQUENCY OSCILLATION IN PLASMA. Acta Physica Sinica, 1982, 31(10): 1317-1336. doi: 10.7498/aps.31.1317
Metrics
  • Abstract views:  2346
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  10 April 2022
  • Accepted Date:  18 October 2022
  • Available Online:  19 October 2022
  • Published Online:  20 November 2022

/

返回文章
返回