Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photoelectric modulation and resistive switching characteristic of ReSe2/WSe2 memtransistor

Yu Xue-Ling Chen Feng-Xiang Xiang Tao Deng Wen Liu Jia-Ning Wang Li-Sheng

Citation:

Photoelectric modulation and resistive switching characteristic of ReSe2/WSe2 memtransistor

Yu Xue-Ling, Chen Feng-Xiang, Xiang Tao, Deng Wen, Liu Jia-Ning, Wang Li-Sheng
PDF
HTML
Get Citation
  • Memtransistor is a multiterminal device combining the concepts of memristor and field-effect transistor. Two-dimensional transition metal sulfides have unique electronic structure and properties, and they are widely used in electronic devices, energy conversions, memories and other fields. In this work, a two-dimensional ReSe2/WSe2 heterostructure memtransistor is prepared, then the resistive switching characteristics under the electrical modulation, optical modulation, and electric-optical dual gate control are discussed. The results show that the gate control is an effective modulation method, which can change the on/off ratio of the device from 101 to 105. Then, the resistance and on/off ratio of the memtransistor can be controlled by changing the light wavelength and the illumination power. Moreover, the switching ratio of the device can also be changed in a range of 102–105 by electric and light dual-gate control, and the reasons for the change of resistance states of the device under different modulation conditions are analyzed. Furthermore, after 225 cycles and 1.9 × 104 s, the ReSe2/WSe2 heterostructure memtransistor still maintains a switch ratio close to 104, indicating the good stability and durability of the device. It demonstrates that the ReSe2/WSe2 memtransistor will be one of potential candidates for the next- generation nonvolatile memory applications.
      Corresponding author: Chen Feng-Xiang, phonixchen79@whut.edu.cn ; Wang Li-Sheng, wang_lesson@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51702245), the National Key Research and Development Program of China (Grant Nos. 2018YFE0111500, 2019YFA0704900), the Open Fund Project of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology), China (Grant No. 2021-KF-16), and the Fundamental Research Fund for the Central Universities, China (Grant No. WUT2021III065JC)
    [1]

    Chua L 1971 IEEE Trans. Circuit Theory 5 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Cheng S L, Fan Z, Rao J J, Hong L Q, Huang Q C, Tao R Q, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Yuan G L, Gao X S, Liu J M 2020 Iscience 23 101874Google Scholar

    [4]

    Cui B Y, Fan Z, Li W J, Chen Y H, Dong S, Tan Z W, Cheng S L, Tian B B, Tao R Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2022 Nat. Commun. 13 1707Google Scholar

    [5]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [6]

    Xu X W, Ding Y K, Hu S X B, Niemier M, Cong J, Hu Y, Shi Y Y 2018 Nat. Electron. 1 216Google Scholar

    [7]

    Zeng M Q, Xiao Y, Liu J X, Yang K N, Fu L 2018 Chem. Rev. 118 6236Google Scholar

    [8]

    Nguyen D A, Oh H M, Duong N T, Bang S, Yoon S J, Jeong M S 2018 ACS Appl. Mater. Interfaces 10 10322Google Scholar

    [9]

    Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J H 2016 Nat. Commun. 7 13413Google Scholar

    [10]

    Yoshida M, Suzuki R, Zhang Y, Nakano M, Iwasa Y 2015 Sci. Adv. 1 e1500606Google Scholar

    [11]

    Vu Q A, Kim H, Nguyen V L, Won U Y, Adhikari S, Kim K, Lee Y H, Yu W J 2017 Adv. Mater. 29 1703363Google Scholar

    [12]

    Xu R J, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S, Shin H J, Ham D 2019 Nano Lett. 19 2411Google Scholar

    [13]

    Park M, Park S, Yoo K H 2016 ACS Appl. Mater. Interfaces 8 14046Google Scholar

    [14]

    John R A, Liu F C, Chien N A, Kulkarni M R, Zhu C, Fu Q D, Basu A, Liu Z, Mathews N 2018 Adv. Mater. 30 1800220Google Scholar

    [15]

    Sangwan V K, Lee H S, Bergeron H, Beck M E, Chen K S, Hersam M C, Balla I 2018 Nature 554 500Google Scholar

    [16]

    Zhong Y N, Gao X, Xu J L, Siringhaus H, Wang S D 2020 Adv. Electron. Mater. 6 1900955Google Scholar

    [17]

    邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302Google Scholar

    Deng W, Wang L S, Liu J N, Yu X L, Chen F X 2021 Acta Phys. Sin. 70 217302Google Scholar

    [18]

    Zhang W G, Gao H, Deng C S, Lü T, Hu S H, Hao W, Xue S Y, Tao Y F, Deng L M, Xiong W 2021 Nanoscale 13 11497Google Scholar

    [19]

    Kim M, Ge R J, Wu X H, Lan X, Tice J, Lee J C, Akinwande D 2018 Nat. Commun. 9 2524Google Scholar

    [20]

    Rehman S, Kim H, Khan M F, Hur J H, Eom J, Kim D K 2021 J. Alloys Compd. 855 157310Google Scholar

    [21]

    殷俊 2019 硕士学位论文 (北京: 清华大学)

    Yin J 2019 M. S. Thesis (Beijing: Tsing University) (in Chinese)

    [22]

    Tian X, Liu Y 2021 J. Semicond. 42 032001Google Scholar

    [23]

    Zhou X, Hu X Z, Zhou S S, Song H Y, Zhang Q, Pi L J, Li L, Li H Q, Lü J T, Zhai T Y 2018 Adv. Mater. 30 1703286Google Scholar

    [24]

    Ali M H, Kang D H, Park J H 2017 Org. Electron. 53 14

    [25]

    Li D, Wu B, Zhu X J, Wang J T, Ryu B, Lu W D, Liang X G 2018 ACS Nano 12 9240Google Scholar

    [26]

    Wang L, Liao W G, Wong S L, Yu Z G, Li S F, Lim Y F, Feng X W, Tan W C, Huang X, Chen L, Liu L, Chen J S, Gong X, Zhu C X, Liu X K, Zhang Y W, Chi D Z, Ang K W 2019 Adv. Funct. Mater. 29 1901106Google Scholar

    [27]

    Wang C, Yang S, Xiong W Q, Xia C X, Cai H, Chen B, Wang X T, Zhang X Z, Wei Z M, Tongay S, Li J B, Liu Q 2016 Phys. Chem. Chem. Phys. 18 27750Google Scholar

    [28]

    Wang X T, Huang L, Peng Y T, Huo N J, Wu K D, Xia C X, Wei Z M, Tongay S, Li J B 2016 Nano Res. 9 507Google Scholar

    [29]

    Ahn J, Ko K, Kyhm J H, Ra H S, Bae H, Hong S, Kim D Y, Jang J, Kim T W, Choi S, Kang J H, Kwon N, Park S, Ju B K, Poon T C, Park M C, Im S, Hwang D K 2021 ACS Nano 15 17917Google Scholar

    [30]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732Google Scholar

    [31]

    Jang M H, Agarwal R, Nukala P, Choi D, Johson A T C, Chen I W, Agarwal R 2016 Nano Lett. 16 2139Google Scholar

    [32]

    田学伟, 王永生, 张璐, 刘安琪, 何大伟 2018 中国科技信息 13 98Google Scholar

    Tian X W, Wang Y S, Zhang L, Liu A Q, He D W 2018 Chin. Sci. Technol. Inf. 13 98Google Scholar

    [33]

    Yin S Q, Song C, Sun Y M, Qiao L L, Wang B L, Sun Y F, Liu K, Pan F, Zhang X Z 2019 ACS Appl. Mater. Interfaces 11 43344Google Scholar

    [34]

    张璐 2016 硕士学位论文 (北京: 北京交通大学)

    Zhang L 2016 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [35]

    夏风梁, 石凯熙, 赵东旭, 王云鹏, 范翊, 李金华 2021 发光学报 42 257Google Scholar

    Xia F L, Shi K X, Zhao D X, Wang Y P, Fan Y, Li J H 2021 Chin. J. Lumin. 42 257Google Scholar

  • 图 1  ReSe2/WSe2异质结晶体管的结构图

    Figure 1.  Structure diagram of the ReSe2/WSe2 heterojunction memtransistor

    图 2  ReSe2/WSe2异质结的形貌表征 (a) ReSe2/WSe2异质结的AFM图; (b) 沿图(a)中白色箭头的厚度数据图; (c) WSe2和ReSe2的拉曼光谱图

    Figure 2.  Surface topography image of ReSe2/WSe2 heterojunction memtransistor: (a) AFM image of ReSe2/WSe2 heterojunction; (b) height profile of ReSe2/WSe2 along the thin white line in panel (a); (c) Raman spectra of the WSe2 and ReSe2 layer

    图 3  在0 V栅压下, Au/ReSe2/WSe2/Au记忆晶体管的阻变特性 (a) 在不同源漏扫描电压下的Id-Vds特性曲线; (b) 连续225次循环周期下器件在Vds = 2.4 V时的高低阻值变化图; (c) 器件在室温下高低阻态保持特性图

    Figure 3.  Resistance characteristics of the Au/ReSe2/WSe2/Au memtransistor at Vg = 0 V: (a) Id-Vds characteristic curves of Au/ReSe2/WSe2/Au memtransistor at different source drain sweeping voltages; (b) reversible resistance switching between the HRS and LRS over 225 cycles at Vds = 2.4 V; (c) the retention characteristics of the device at room temperature

    图 4  ReSe2/WSe2记忆晶体管的阻变转换机制分析 (a) ReSe2和WSe2单独的能带图; (b) ReSe2/WSe2异质结的平衡能带图; (c) 负偏置电压下的双对数Id-Vds曲线

    Figure 4.  Resistance switching mechanism analysis of ReSe2/WSe2 memtransistor: (a) Energy band arrangement for ReSe2 and WSe2; (b) energy band diagram of ReSe2/WSe2 heterojunction; (c) logarithmic Id-Vds curves of the memtransistor in the negative bias region

    图 5  在–1 V < Vg < 1 V范围中, 不同栅压下ReSe2/WSe2记忆晶体管的阻变特性 (a) 负栅压Vg = –0.1— –1 V时的Id-Vds特性曲线; (b) 正栅压Vg = 0.1—1 V时的Id-Vds特性曲线(0 V作为参考)

    Figure 5.  Resistance characteristics of ReSe2/WSe2 memtransistors at different gate voltages in the range of –1 V < Vg < 1 V: (a) Id-Vds characteristic curves at negative gate voltage Vg = –0.1−–1 V; (b) Id-Vds characteristic curves at positive gate voltage Vg = 0.1−1 V (the black line with Vg = 0 V is as a reference)

    图 6  高栅压(|Vg| > 10 V)时, 不同栅压下Au/ReSe2/WSe2/Au器件的阻变特性 (a) 负栅压Vg = –10—–25 V时的Id-Vds特性曲线(其中0 V曲线作为参考); (b) 正栅压Vg = 10—25 V时的Id-Vds特性曲线

    Figure 6.  Resistance characteristics of Au/ReSe2/WSe2/Au device at higher gate voltages (|Vg| > 10 V): (a) Id-Vds characteristic curves at negative gate voltages Vg = –10−–25 V (the black line with Vg = 0 V is as a reference) ; (b) Id-Vds characteristic curves at positive gate voltages Vg = 10−25 V

    图 7  Au/ReSe2/WSe2/Au记忆晶体管的简化能带图(Vds < 0) (a) Vg = 0 V; (b) Vg < 0 V; (c) Vg > 0 V

    Figure 7.  Simplified band diagram of Au/ReSe2/WSe2/Au memtransistor (Vds < 0): (a) Vg = 0 V; (b) Vg < 0 V; (c) Vg > 0 V

    图 8  Au/ReSe2/WSe2/Au器件在不同波长光栅调控下的Id-Vds曲线

    Figure 8.  Id-Vds curves of the Au/ReSe2/WSe2/Au device under optical modulation with different wavelengths

    图 9  不同波长、不同光强下器件的Id-Vds特性曲线 (a) 500 nm光照; (b) 800 nm光照; (c) 1000 nm光照

    Figure 9.  Id-Vds curves of the device under different wavelengths and powers: (a) 500 nm illumination; (b) 800 nm illumination; (c) 1000 nm illumination

    图 10  500 nm波长光照和电场同时调控下器件的阻变特性 (a) 负栅压Vg = –5—25 V时的Id-Vds曲线; (b) 正栅压Vg = 5—25 V时的Id-Vds曲线

    Figure 10.  Resistance characteristics of electric and light dual-gate tunable memtransistor with illumination wavelength of 500 nm: (a) Id-Vds curves at negative gate voltages Vg = –5–25 V; (b) Id-Vds curves at positive gate voltages Vg = 5–25 V

    图 11  光场和电场的双栅协控下, Au/ReSe2/WSe2/Au记忆晶体管特性 (a) 器件的高低阻态随栅压、波长的变化; (b) 开关比随栅压、波长的变化

    Figure 11.  Electric and light dual-gate tunable Au/ReSe2/WSe2/Au memtransistor: (a) The high and low resistance states of the devices under different gate voltages and different incident wavelengths; (b) on/off ratio of the devices under different gate voltages and different incident wavelengths.

    表 1  不同正栅压下器件的详细参数

    Table 1.  Detailed parameters of the device under different positive gate voltages

    栅压 Vg/V
    01102025
    HRS阻
    值/Ω
    6.31 ×
    1011
    4.36 ×
    1011
    1.20 ×
    1010
    8.75 ×
    108
    5.26 ×
    108
    LRS阻
    值/Ω
    2.37 ×
    106
    4.31 ×
    106
    5.59 ×
    106
    9.66 ×
    106
    1.12 ×
    107
    开关比2.66 ×
    105
    1.01 ×
    105
    2.14 ×
    103
    9.06 ×
    101
    4.70 ×
    101
    DownLoad: CSV
  • [1]

    Chua L 1971 IEEE Trans. Circuit Theory 5 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Cheng S L, Fan Z, Rao J J, Hong L Q, Huang Q C, Tao R Q, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Yuan G L, Gao X S, Liu J M 2020 Iscience 23 101874Google Scholar

    [4]

    Cui B Y, Fan Z, Li W J, Chen Y H, Dong S, Tan Z W, Cheng S L, Tian B B, Tao R Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2022 Nat. Commun. 13 1707Google Scholar

    [5]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [6]

    Xu X W, Ding Y K, Hu S X B, Niemier M, Cong J, Hu Y, Shi Y Y 2018 Nat. Electron. 1 216Google Scholar

    [7]

    Zeng M Q, Xiao Y, Liu J X, Yang K N, Fu L 2018 Chem. Rev. 118 6236Google Scholar

    [8]

    Nguyen D A, Oh H M, Duong N T, Bang S, Yoon S J, Jeong M S 2018 ACS Appl. Mater. Interfaces 10 10322Google Scholar

    [9]

    Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J H 2016 Nat. Commun. 7 13413Google Scholar

    [10]

    Yoshida M, Suzuki R, Zhang Y, Nakano M, Iwasa Y 2015 Sci. Adv. 1 e1500606Google Scholar

    [11]

    Vu Q A, Kim H, Nguyen V L, Won U Y, Adhikari S, Kim K, Lee Y H, Yu W J 2017 Adv. Mater. 29 1703363Google Scholar

    [12]

    Xu R J, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S, Shin H J, Ham D 2019 Nano Lett. 19 2411Google Scholar

    [13]

    Park M, Park S, Yoo K H 2016 ACS Appl. Mater. Interfaces 8 14046Google Scholar

    [14]

    John R A, Liu F C, Chien N A, Kulkarni M R, Zhu C, Fu Q D, Basu A, Liu Z, Mathews N 2018 Adv. Mater. 30 1800220Google Scholar

    [15]

    Sangwan V K, Lee H S, Bergeron H, Beck M E, Chen K S, Hersam M C, Balla I 2018 Nature 554 500Google Scholar

    [16]

    Zhong Y N, Gao X, Xu J L, Siringhaus H, Wang S D 2020 Adv. Electron. Mater. 6 1900955Google Scholar

    [17]

    邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302Google Scholar

    Deng W, Wang L S, Liu J N, Yu X L, Chen F X 2021 Acta Phys. Sin. 70 217302Google Scholar

    [18]

    Zhang W G, Gao H, Deng C S, Lü T, Hu S H, Hao W, Xue S Y, Tao Y F, Deng L M, Xiong W 2021 Nanoscale 13 11497Google Scholar

    [19]

    Kim M, Ge R J, Wu X H, Lan X, Tice J, Lee J C, Akinwande D 2018 Nat. Commun. 9 2524Google Scholar

    [20]

    Rehman S, Kim H, Khan M F, Hur J H, Eom J, Kim D K 2021 J. Alloys Compd. 855 157310Google Scholar

    [21]

    殷俊 2019 硕士学位论文 (北京: 清华大学)

    Yin J 2019 M. S. Thesis (Beijing: Tsing University) (in Chinese)

    [22]

    Tian X, Liu Y 2021 J. Semicond. 42 032001Google Scholar

    [23]

    Zhou X, Hu X Z, Zhou S S, Song H Y, Zhang Q, Pi L J, Li L, Li H Q, Lü J T, Zhai T Y 2018 Adv. Mater. 30 1703286Google Scholar

    [24]

    Ali M H, Kang D H, Park J H 2017 Org. Electron. 53 14

    [25]

    Li D, Wu B, Zhu X J, Wang J T, Ryu B, Lu W D, Liang X G 2018 ACS Nano 12 9240Google Scholar

    [26]

    Wang L, Liao W G, Wong S L, Yu Z G, Li S F, Lim Y F, Feng X W, Tan W C, Huang X, Chen L, Liu L, Chen J S, Gong X, Zhu C X, Liu X K, Zhang Y W, Chi D Z, Ang K W 2019 Adv. Funct. Mater. 29 1901106Google Scholar

    [27]

    Wang C, Yang S, Xiong W Q, Xia C X, Cai H, Chen B, Wang X T, Zhang X Z, Wei Z M, Tongay S, Li J B, Liu Q 2016 Phys. Chem. Chem. Phys. 18 27750Google Scholar

    [28]

    Wang X T, Huang L, Peng Y T, Huo N J, Wu K D, Xia C X, Wei Z M, Tongay S, Li J B 2016 Nano Res. 9 507Google Scholar

    [29]

    Ahn J, Ko K, Kyhm J H, Ra H S, Bae H, Hong S, Kim D Y, Jang J, Kim T W, Choi S, Kang J H, Kwon N, Park S, Ju B K, Poon T C, Park M C, Im S, Hwang D K 2021 ACS Nano 15 17917Google Scholar

    [30]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732Google Scholar

    [31]

    Jang M H, Agarwal R, Nukala P, Choi D, Johson A T C, Chen I W, Agarwal R 2016 Nano Lett. 16 2139Google Scholar

    [32]

    田学伟, 王永生, 张璐, 刘安琪, 何大伟 2018 中国科技信息 13 98Google Scholar

    Tian X W, Wang Y S, Zhang L, Liu A Q, He D W 2018 Chin. Sci. Technol. Inf. 13 98Google Scholar

    [33]

    Yin S Q, Song C, Sun Y M, Qiao L L, Wang B L, Sun Y F, Liu K, Pan F, Zhang X Z 2019 ACS Appl. Mater. Interfaces 11 43344Google Scholar

    [34]

    张璐 2016 硕士学位论文 (北京: 北京交通大学)

    Zhang L 2016 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [35]

    夏风梁, 石凯熙, 赵东旭, 王云鹏, 范翊, 李金华 2021 发光学报 42 257Google Scholar

    Xia F L, Shi K X, Zhao D X, Wang Y P, Fan Y, Li J H 2021 Chin. J. Lumin. 42 257Google Scholar

  • [1] Li Yan, Chen Xin-Li, Wang Wei-Sheng, Shi Zhi-Wen, Zhu Li-Qiang. Egg shell membrane based electrolyte gated oxide neuromorphic transistor. Acta Physica Sinica, 2023, 72(15): 157302. doi: 10.7498/aps.72.20230411
    [2] Zheng Jun, Ma Li, Li Chun-Lei, Yuan Rui-Yang, Guo Ya-Tao, Fu Xu-Ri. Optically controlled silicene and germanene transistors driven by spin-bias. Acta Physica Sinica, 2022, 71(19): 198502. doi: 10.7498/aps.71.20221047
    [3] Yu Xue-Ling,  Chen Feng-Xiang,  Xiang Tao,  Deng Wen,  Liu Jia-Ning,  Wang Li-Sheng. Research on the photoelectric modulation and resistive switching characteristic of ReSe2/WSe2 memtransistor. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221154
    [4] Gou Shi-Long, Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Sheng Jiang-Kun, Xue Yuan-Yuan, Pan Chen. Radiation mechanism of gate-controlled lateral PNP bipolar transistors in the hydrogen environment. Acta Physica Sinica, 2021, 70(15): 156101. doi: 10.7498/aps.70.20210351
    [5] Deng Wen, Wang Li-Sheng, Liu Jia-Ning, Yu Xue-Ling, Chen Feng-Xiang. Resistive switching behavior and mechanism of multilayer MoS2 memtransistor under control of back gate bias and light illumination. Acta Physica Sinica, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [6] Chai Jin-Hua, Chen Fei. Methodology of filter-type multi-dithering phase control for quasi parallel light interference. Acta Physica Sinica, 2018, 67(1): 014202. doi: 10.7498/aps.67.20171562
    [7] Zhou Wen, Ji Ke, Chen He-Ming. Parallel magneticcontrolled THz modulator based on two-dimensional magnetized plasma photonic crystal. Acta Physica Sinica, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [8] Tian Wei, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan, Zhang Huai-Wu. Optically tuned wideband terahertz wave amplitude modulator based on gold-doped silicon. Acta Physica Sinica, 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [9] Ma Wu-Ying, Wang Zhi-Kuan, Lu Wu, Xi Shan-Bin, Guo Qi, He Cheng-Fa, Wang Xin, Liu Mo-Han, Jiang Ke. The base current broadening effect and charge separation method of gate-controlled lateral PNP bipolar transistors. Acta Physica Sinica, 2014, 63(11): 116101. doi: 10.7498/aps.63.116101
    [10] Zhu De-Ming, Men Chuan-Ling, Cao Min, Wu Guo-Dong. Ultralow-voltage in-plane-gate indium-tin-oxide thin-film transistors made of P-doped SiO2 dielectrics. Acta Physica Sinica, 2013, 62(11): 117305. doi: 10.7498/aps.62.117305
    [11] Zhou Jian-Wei, Liang Jing-Qiu, Liang Zhong-Zhu, Tian Chao, Qin Yu-Xin, Wang Wei-Biao. Tunable two-dimensional photonic crystal cavity all-optical switching infiltrated with liquid-crystal. Acta Physica Sinica, 2013, 62(13): 134208. doi: 10.7498/aps.62.134208
    [12] Li Fei, Xiao Liu, Liu Pu-Kun, Yi Hong-Xia, Wan Xiao-Sheng. A study on the cut-off amplification factor of the grid with film sphere and porous structure in grid- controlled electron gun. Acta Physica Sinica, 2012, 61(7): 078502. doi: 10.7498/aps.61.078502
    [13] Xi Shan-Bin, Lu Wu, Ren Di-Yuan, Zhou Dong, Wen Lin, Sun Jing, Wu Xue. Quantitative separation of radiation induced charges for gate controlled later PNP bipolar transistors. Acta Physica Sinica, 2012, 61(23): 236103. doi: 10.7498/aps.61.236103
    [14] Xi Shan-Bin, Lu Wu, Wang Zhi-Kuan, Ren Di-Yuan, Zhou Dong, Wen Lin, Sun Jing. Use the subthreshold-current technique to separate radiation induced defects in gate controlled lateral pnp bipolar transistors. Acta Physica Sinica, 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [15] Guo Zhan, Fan Fei, Bai Jin-Jun, Niu Chao, Chang Sheng-Jiang. Magnetically tunable magnetic photonic crystal forterahertz switch and filter. Acta Physica Sinica, 2011, 60(7): 074218. doi: 10.7498/aps.60.074218
    [16] Wang Yong-Jun, Wu Chong-Qing, Wang Zhi, Wang Ya-Ping, Xin Xiang-Jun. Signal impairment analysis of optical controlled apparatus caused by semiconductor optical amplifier. Acta Physica Sinica, 2010, 59(6): 4042-4049. doi: 10.7498/aps.59.4042
    [17] Bi Hai-Xing, Zhou Yun-Song, Zhao Li-Ming, Wang Fu-He. Magnetron photonic switching circuit in photonic crystal. Acta Physica Sinica, 2008, 57(9): 5718-5721. doi: 10.7498/aps.57.5718
    [18] Li Ya-Jie, Wu Chong-Qing, Wang Yong-Jun, Tang Qing-Shan. Performance analysis of control pulse in optical controlled apparatus based on semiconductor optical amplifier. Acta Physica Sinica, 2007, 56(2): 952-957. doi: 10.7498/aps.56.952
    [19] Meng Zhi-Guo, Wu Chun-Ya, Li Juan, Xiong Shao-Zhen, Kwok Hoi S., Man Wong. Low-temperature metal-induced unilateral crystallized polycrystalline silicon thin-film transistor and gate-modulated lightly-doped drain structure. Acta Physica Sinica, 2005, 54(7): 3363-3369. doi: 10.7498/aps.54.3363
    [20] . Acta Physica Sinica, 2002, 51(4): 882-888. doi: 10.7498/aps.51.882
Metrics
  • Abstract views:  2570
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  10 June 2022
  • Accepted Date:  17 July 2022
  • Available Online:  19 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回