Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Resonant electro-optic phase modulator and photodetector for stabilizing laser frequency and quantum optics

Tian Long Zheng Li-Ang Zhang Xiao-Li Wu Yi-Miao Wang Qing-Wei Qin Bo Wang Ya-Jun Li Wei Shi Shao-Ping Chen Li-Rong Zheng Yao-Hui

Citation:

Resonant electro-optic phase modulator and photodetector for stabilizing laser frequency and quantum optics

Tian Long, Zheng Li-Ang, Zhang Xiao-Li, Wu Yi-Miao, Wang Qing-Wei, Qin Bo, Wang Ya-Jun, Li Wei, Shi Shao-Ping, Chen Li-Rong, Zheng Yao-Hui
PDF
HTML
Get Citation
  • Photoelectric functional device with specific optical, electrical and photoelectric conversion effects is one of the most important resources of modern information science and technology. Electro-optic modulator and photodetector are very important photoelectric functional devices, which are key devices in the fields of frequency locking, feedback control, photoelectric information conversion, optical communication, photoelectric information modulation, etc., and play an irreplaceable role in frequency stabilization locking technology of PDH (Pound-Drever-Hall, simply referred to as PDH). The PDH technology is widely used in researches of large scientific devices, quantum optics, optical communication and other fields. Using electro-optical phase modulator to carry out laser phase modulation is the primary process to realize frequency stabilization locking of standard PDH. Photoelectric detection can implement the photoelectric conversion of the carried weak modulation signal and spectral peak signal into electrical signal, and then feedback control through proportional integral and differential circuits, so as to achieve stable locking and frequency stabilization. The resonant electro-optical phase modulation (RPM) with high modulation depth, low power consumption and low half-wave voltage and microwatt resonant photoelectric detection (RPD) functional device with high signal-to-noise (SNR) ratio are invented to meet the demand for extraction and detection of extremely weak signals. The resonant circuit is composed of the single-end wedge-angle lithium niobate crystal, low noise photodiode and low-loss and high-Q electronic components. Low power consumption, high modulation depth electro-optic modulation, and high gain photoelectric detection are realized by the principle of resonant enhancement. When the optimal modulation frequency point is 10 MHz, the bandwidth of RPM is 225 kHz with Q of 44.4, when the modulation depth is 1.435, the RPM requires RF drive voltage of RPM to be 4 V. When the optimal modulation frequency point is 20 MHz, the bandwidth of RPM is 460 kHz with Q of 43.5, the required RF drive voltage of RPM is 6.5 V when the modulation depth is 1.435. The optimal detection frequency point of the self-invent RPD is 20.00 MHz, with a bandwidth of 1 MHz, Q of 20, the gain of 80 dB at 100 μW. With the home-made RPM and RPD in the extraction loop for extremely weak signal, the SNR of error signal is as high as 5.088 at 10 μW, 34.933 at 50 μW and 58.7 at 100 μW. Such a loop improves the performance and stability of the entire feedback control loop by optimizing parameters of proportional integral differential, which provides key devices and technological approaches for preparing a highly stable quantum light source and ultra-stable laser.
      Corresponding author: Tian Long, tianlong@sxu.edu.cn ; Zheng Yao-Hui, yhzheng@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFC2200402), the National Natural Science Foundation of China (Grants Nos. 62027821, 62225504, 62035015, U22A6003, 12174234, 12274275), the Key R&D Program of Shanxi, China (Grant No. 202102150101003), and the Program for Sanjin Scholar of Shanxi Province, China.
    [1]

    周忠祥 2017 光电功能材料与器件 (北京: 高等教育出版社) 第20页

    Zhou Z X 2017 Optoelectronic Functional Materials and Devices (Beijing: Higher Education Press) p20 (in Chinese)

    [2]

    Drever R W, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [3]

    Abramovici A, Althouse W E, Drever R W, Gürsel Y, Kawamura S, Raab F J 1992 Science 256 325Google Scholar

    [4]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [5]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [6]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [7]

    Thorlabs, https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=2729 [2023-04-25]

    [8]

    李庚霖, 贾曰辰, 陈峰 2020 物理学报 69 157801Google Scholar

    Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar

    [9]

    尚成林, 陶诗琪, 孙昊骋, 潘安, 曾成, 夏金松 2022 半导体光电 43 95

    Shang C L, Tao S Q, Sun H C, Pan A, Zeng C, Xia J S 2022 Semicond. Optoelectron. 43 95

    [10]

    刘子溪, 曾成, 夏金松 2022 中国激光 49 1206001Google Scholar

    Liu Z X, Zeng C, Xia J S 2022 Chin. J. Lasers 49 1206001Google Scholar

    [11]

    张腾, 李大为, 王韬, 崔勇, 张天雄, 王丽, 张杰, 徐光 2021 物理学报 70 084202Google Scholar

    Zhang T, Li D W, Wang T, Cui Y, Zhang T X, Wang L, Zhang J, Xu G 2021 Acta Phys. Sin. 70 084202Google Scholar

    [12]

    Matei D G, Legero T, Häfner S, Grebing C, Weyrich R, Zhang W, Sterr U 2017 Phys. Rev. Lett. 118 263202Google Scholar

    [13]

    邰朝阳 2018 博士学位论文 (北京: 中国科学院大学)

    Tai C Y 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [14]

    Shi X H, Zhang J, Zeng X Y, Lü X L, Liu K, Xi J, Ye Y X, Lu Z H 2018 Appl. Phys. B 124 153

    [15]

    Li L F, Wang J, Bi J, Zhang T, Peng J K, Zhi Y L, Chen L S 2021 Rev. Sci. Instrum. 92 043001Google Scholar

    [16]

    Li Z H, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar

    [17]

    Tai Z Y, Yan L L, Zhang Y Y, Zhang X F, Guo W G, Zhang S G, Jiang H F 2016 Opt. Lett. 41 5584Google Scholar

    [18]

    Zhi Y L, Chen L S, Li L F 2022 Opt. Express 30 17936Google Scholar

    [19]

    Dooley K L 2011 Design and Performance of High Laser Power Interferometers for Gravitational-Wave Detection (Florida: University of Florida) p128

    [20]

    Qubig, https://www.qubig.com/products/electro-optic-modulators-230/phase-modulators.html [2023-4-25]

    [21]

    郑耀辉 焦南婧 李瑞鑫 田龙 王雅君 2022 中国专利 CN112649975B

    Zheng Y H, Jiao N J, Li R X, Tian L, Wang Y J 2022 China Patent CN112649975 B(in Chinese)

    [22]

    Kwee P, Willke B, Danzmann K 2009 Opt. Lett. 34 2912Google Scholar

    [23]

    Junker J, Oppermann P, Willke B 2017 Opt. Lett. 42 755Google Scholar

    [24]

    靳晓丽, 苏静, 郑耀辉 2016 量子光学学报 22 108

    Jin X L, Su J, Zheng Y H 2016 J. Quantum Opt. 22 108

    [25]

    王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 郑耀辉 2022 红外与激光工程 51 111

    Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Zheng Y H 2022 Infrared Laser Engineer. 51 111

    [26]

    潘国鑫, 刘惠, 翟泽辉, 刘建丽 2021 量子光学学报 2 109

    Pan G X, Liu H, Zhai Z H, Liu J L 2021 J. Quantum Opt. 2 109

    [27]

    Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Guo G C 2021 Phys. Rev. Lett. 126 010503Google Scholar

    [28]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Pan J W 2020 Science 370 1460Google Scholar

    [29]

    周海军, 王文哲, 郑耀辉 2013 光学精密工程 21 2737Google Scholar

    Zhou H J, Wang W Z, Zheng Y H 2013 Opt. Precis. Engineer. 21 2737Google Scholar

    [30]

    Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar

    [31]

    Bowden W, Vianello A, Hobson R 2019 Rev. Sci. Instrum. 90 106106Google Scholar

    [32]

    Grote H 2007 Rev. Sci. Instrum. 78 54704Google Scholar

    [33]

    Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instrum. 87 103114Google Scholar

    [34]

    陈朝勇 2018 硕士学位论文 (太原: 山西大学)

    Chen C Y 2018 M. S. Thesis (Taiyuan: Shanxi University) (in Chinese)

    [35]

    张培玲 2018 高频电子线路 (北京: 机械工业出版社) 第9页

    Zhang P L 2018 High Freq. Circuits (Beijing: China Machine Press) p9 (in Chinese)

    [36]

    李志秀 2019 博士学位论文(太原: 山西大学)

    Li Z X 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [37]

    张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 4 456

    Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 J. Quantum Opt. 4 456

  • 图 1  典型串联谐振回路

    Figure 1.  Typical series resonant circuit.

    图 2  贝塞尔函数随调制深度变化关系图

    Figure 2.  Diagram of Bessel function with modulation depth.

    图 3  谐振光电器件测试实验装置图(Laser为全固态激光器; OI为光隔离器; λ/2为半波片; PBS为偏振分束器; RPM为电光相位调制器; HR为高反镜; OSC为示波器; MC为模式清洁器; RPD为共振探测器; PD为光电探测器; NA为网络分析仪)

    Figure 3.  Experimental setup for testing resonant photoelectric devices (Laser, solid-state laser; OI, optical isolator; λ/2, half-wave-plate; PBS, polarization beam splitter; RPM, resonant electro-optic phase modulator; HR, high reflective mirror; OSC, oscilloscope; MC, mode cleaner; RPD, resonant photodetector; PD, normal photodetector; NA, network analyzer).

    图 4  自研谐振型电光相位调制器的阻抗分析测试结果图

    Figure 4.  Input return loss test results of RPM.

    图 5  调制器调制深度随驱动电压变化测试结果图

    Figure 5.  The test results of modulator debugging depth as a function of driving voltage.

    图 6  自研谐振型光电功能器件(a)与商用探测器(b)的传输信号测试图

    Figure 6.  The test result of transmission signal of self-innovate resonant photoelectric devices (a) and commercial detector (b).

    图 7  MC腔误差信号的信噪比和峰峰值测试结果图

    Figure 7.  The test results of signal to noise ratio and peak-to-peak of MC cavity error signal.

  • [1]

    周忠祥 2017 光电功能材料与器件 (北京: 高等教育出版社) 第20页

    Zhou Z X 2017 Optoelectronic Functional Materials and Devices (Beijing: Higher Education Press) p20 (in Chinese)

    [2]

    Drever R W, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [3]

    Abramovici A, Althouse W E, Drever R W, Gürsel Y, Kawamura S, Raab F J 1992 Science 256 325Google Scholar

    [4]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [5]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [6]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [7]

    Thorlabs, https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=2729 [2023-04-25]

    [8]

    李庚霖, 贾曰辰, 陈峰 2020 物理学报 69 157801Google Scholar

    Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar

    [9]

    尚成林, 陶诗琪, 孙昊骋, 潘安, 曾成, 夏金松 2022 半导体光电 43 95

    Shang C L, Tao S Q, Sun H C, Pan A, Zeng C, Xia J S 2022 Semicond. Optoelectron. 43 95

    [10]

    刘子溪, 曾成, 夏金松 2022 中国激光 49 1206001Google Scholar

    Liu Z X, Zeng C, Xia J S 2022 Chin. J. Lasers 49 1206001Google Scholar

    [11]

    张腾, 李大为, 王韬, 崔勇, 张天雄, 王丽, 张杰, 徐光 2021 物理学报 70 084202Google Scholar

    Zhang T, Li D W, Wang T, Cui Y, Zhang T X, Wang L, Zhang J, Xu G 2021 Acta Phys. Sin. 70 084202Google Scholar

    [12]

    Matei D G, Legero T, Häfner S, Grebing C, Weyrich R, Zhang W, Sterr U 2017 Phys. Rev. Lett. 118 263202Google Scholar

    [13]

    邰朝阳 2018 博士学位论文 (北京: 中国科学院大学)

    Tai C Y 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [14]

    Shi X H, Zhang J, Zeng X Y, Lü X L, Liu K, Xi J, Ye Y X, Lu Z H 2018 Appl. Phys. B 124 153

    [15]

    Li L F, Wang J, Bi J, Zhang T, Peng J K, Zhi Y L, Chen L S 2021 Rev. Sci. Instrum. 92 043001Google Scholar

    [16]

    Li Z H, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar

    [17]

    Tai Z Y, Yan L L, Zhang Y Y, Zhang X F, Guo W G, Zhang S G, Jiang H F 2016 Opt. Lett. 41 5584Google Scholar

    [18]

    Zhi Y L, Chen L S, Li L F 2022 Opt. Express 30 17936Google Scholar

    [19]

    Dooley K L 2011 Design and Performance of High Laser Power Interferometers for Gravitational-Wave Detection (Florida: University of Florida) p128

    [20]

    Qubig, https://www.qubig.com/products/electro-optic-modulators-230/phase-modulators.html [2023-4-25]

    [21]

    郑耀辉 焦南婧 李瑞鑫 田龙 王雅君 2022 中国专利 CN112649975B

    Zheng Y H, Jiao N J, Li R X, Tian L, Wang Y J 2022 China Patent CN112649975 B(in Chinese)

    [22]

    Kwee P, Willke B, Danzmann K 2009 Opt. Lett. 34 2912Google Scholar

    [23]

    Junker J, Oppermann P, Willke B 2017 Opt. Lett. 42 755Google Scholar

    [24]

    靳晓丽, 苏静, 郑耀辉 2016 量子光学学报 22 108

    Jin X L, Su J, Zheng Y H 2016 J. Quantum Opt. 22 108

    [25]

    王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 郑耀辉 2022 红外与激光工程 51 111

    Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Zheng Y H 2022 Infrared Laser Engineer. 51 111

    [26]

    潘国鑫, 刘惠, 翟泽辉, 刘建丽 2021 量子光学学报 2 109

    Pan G X, Liu H, Zhai Z H, Liu J L 2021 J. Quantum Opt. 2 109

    [27]

    Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Guo G C 2021 Phys. Rev. Lett. 126 010503Google Scholar

    [28]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Pan J W 2020 Science 370 1460Google Scholar

    [29]

    周海军, 王文哲, 郑耀辉 2013 光学精密工程 21 2737Google Scholar

    Zhou H J, Wang W Z, Zheng Y H 2013 Opt. Precis. Engineer. 21 2737Google Scholar

    [30]

    Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar

    [31]

    Bowden W, Vianello A, Hobson R 2019 Rev. Sci. Instrum. 90 106106Google Scholar

    [32]

    Grote H 2007 Rev. Sci. Instrum. 78 54704Google Scholar

    [33]

    Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instrum. 87 103114Google Scholar

    [34]

    陈朝勇 2018 硕士学位论文 (太原: 山西大学)

    Chen C Y 2018 M. S. Thesis (Taiyuan: Shanxi University) (in Chinese)

    [35]

    张培玲 2018 高频电子线路 (北京: 机械工业出版社) 第9页

    Zhang P L 2018 High Freq. Circuits (Beijing: China Machine Press) p9 (in Chinese)

    [36]

    李志秀 2019 博士学位论文(太原: 山西大学)

    Li Z X 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [37]

    张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 4 456

    Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 J. Quantum Opt. 4 456

  • [1] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [2] Huo Guan-Zhong, Su Chao, Wang Ke, Ye Qing-Ying, Zhuang Bin, Chen Shui-Yuan, Huang Zhi-Gao. Magnetic field modulation of photocurrent in BiFeO3 film. Acta Physica Sinica, 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [3] Shen Liu-Feng, Hu Ling-Xiang, Kang Feng-Wen, Ye Yu-Min, Zhuge Fei. Optoelectronic neuromorphic devices and their applications. Acta Physica Sinica, 2022, 71(14): 148505. doi: 10.7498/aps.71.20220111
    [4] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [5] Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming. Photogating effect in two-dimensional photodetectors. Acta Physica Sinica, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [6] Li Dan-Yang, Han Xu, Xu Guang-Yuan, Liu Xiao, Zhao Xiao-Jun, Li Geng-Wei, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie. Bi2O2Se photoconductive detector with low power consumption and high sensitivity. Acta Physica Sinica, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [7] Zhao Xian-Yu, Qu Xing-Hua, Chen Jia-Wei, Zheng Ji-Hui, Wang Jin-Dong, Zhang Fu-Min. Method of measuring absolute distance based on spectral interferometry using an electro-optic comb. Acta Physica Sinica, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [8] Hu Wei-Da, Li Qing, Chen Xiao-Shuang, Lu Wei. Recent progress on advanced infrared photodetectors. Acta Physica Sinica, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
    [9] Wang Da-Wei1\2, Wang Zhao-Ba. Weak ultrasonic signal detection in strong noise. Acta Physica Sinica, 2018, 67(21): 210501. doi: 10.7498/aps.67.20180789
    [10] Wu Dan-Dan, She Wei-Long. Wave coupling theory of nonlocal linear electro-optic effect in a linear absorbent medium. Acta Physica Sinica, 2017, 66(6): 064202. doi: 10.7498/aps.66.064202
    [11] Yan Xia-Chao, Zhu Jiang, Zhang La-Bao, Xing Qiang-Lin, Chen Ya-Jun, Zhu Hong-Quan, Li Jian-Ting, Kang Lin, Chen Jian, Wu Pei-Heng. Model of bit error rate for laser communication based on superconducting nanowire single photon detector. Acta Physica Sinica, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [12] Ren Ya-Na, Yang Bao-Dong, Wang Jie, Yang Guang, Wang Jun-Min. Measurement of the magnetic dipole hyperfine constant Ahfs of cesium 7S1/2 state. Acta Physica Sinica, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [13] Zhong Dong-Zhou, Deng Tao, Zheng Guo-Liang. Manipulation of the complete chaos synchronization in dual-channel encryption system based on polarization-division-multiplexing. Acta Physica Sinica, 2014, 63(7): 070504. doi: 10.7498/aps.63.070504
    [14] Li Chang-Sheng. Crystals modulated by two parameters and their applications. Acta Physica Sinica, 2014, 63(7): 074207. doi: 10.7498/aps.63.074207
    [15] Zhou Fei, Cao Yuan, Yong Hai-Lin, Peng Cheng-Zhi, Wang Xiang-Bin. Photon frequency shift based on electro-optic effect. Acta Physica Sinica, 2014, 63(20): 204202. doi: 10.7498/aps.63.204202
    [16] Sun Wu, Deng Xiao-Jiu, Li Yao-Dong, Zhang Yong-Ming, Zheng Sai-Jing, Wang Wei-Miao. Mechanism of dual-wavelength anti-jamming photoelectric smoke-detection. Acta Physica Sinica, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [17] Zhang Rong, Guo Xu-Guang, Cao Jun-Cheng. Simulation and optimization of grating optical coupling of terahertz quantum well photodetector. Acta Physica Sinica, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [18] Chen Jian-Jun, Li Zhi, Zhang Jia-Sen, Gong Qi-Huang. Surface plasmon polariton modulator based on electro-optic polymer. Acta Physica Sinica, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
    [19] Lin Min, Huang Yong-Mei. Modulation and demodulation for detecting weak periodic signal of stochastic resonance. Acta Physica Sinica, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
    [20] G. O. STRIKER. ULTRAPHOTOMETER USING MAGNETICALLY MODULATED PHOTOMULTIPLIER. Acta Physica Sinica, 1958, 14(1): 23-36. doi: 10.7498/aps.14.23
Metrics
  • Abstract views:  1809
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2023
  • Accepted Date:  04 May 2023
  • Available Online:  22 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回