搜索

x
中国物理学会期刊

光栅局域调控二维光电探测器

CSTR: 32037.14.aps.70.20201325

Photogating effect in two-dimensional photodetectors

CSTR: 32037.14.aps.70.20201325
PDF
HTML
导出引用
  • 近年来, 二维材料独特的物理、化学和电子特性受到了越来越多的科研人员的关注. 特别是石墨烯、黑磷和过渡金属硫化物等二维材料具有优良的光电性能和输运性质, 使其在下一代光电子器件领域具有广阔的应用前景. 本文将主要介绍二维材料在光电探测领域上的应用优势, 概述光电探测器的基本原理和参数指标, 重点探讨光栅效应与传统光电导效应的区别, 以及提高光增益和光响应度的原因和特性, 进而回顾光栅局域调控在光电探测器中的最新进展及应用, 最后总结该类光电探测器面临的问题及对未来方向的展望.

     

    In recent years, due to their unique physical, chemical and electronic properties, two-dimensional materials have received more and more researchers’ attention. In particular, the excellent optoelectronic properties and transport properties of two-dimensional materials such as graphene, black phosphorous and transition metal sulfide materials make them have broad application prospects in the field of next-generation optoelectronic devices. In this article, we will mainly introduce the advantages of two-dimensional materials in the field of photodetection, outline the basic principles and parameters of photodetectors, focus on the difference between the grating effect and the traditional photoconductive effect, and the reasons and characteristics of improving optical gain and optical responsivity. Then we review the latest developments and applications of grating local control in photodetectors, and finally summarize the problems faced by the photodetectors of this kind and their prospects for the future.

     

    目录

    /

    返回文章
    返回