Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Finite element analysis of zero magnetic field shielding for polarized neutron scattering

Zeng Tao Dong Yu-Chen Wang Tian-Hao Tian Long Huang Chu-Yi Tang Jian Zhang Jun-Pei Yu Yi Tong Xin Fan Qun-Chao

Citation:

Finite element analysis of zero magnetic field shielding for polarized neutron scattering

Zeng Tao, Dong Yu-Chen, Wang Tian-Hao, Tian Long, Huang Chu-Yi, Tang Jian, Zhang Jun-Pei, Yu Yi, Tong Xin, Fan Qun-Chao
PDF
HTML
Get Citation
  • Polarized neutron scattering, as one of the experimental techniques of neutron scattering, is a powerful tool for exploring the microstructure of matter. In polarized neutron scattering experiments, magnetic field maintains and guides the neutron polarization, and determines the sample magnetic environment. For complex magnetic sample, it is often necessary to apply zero-field environment at the sample position, so that general polarization analysis becomes feasible. To achieve effective zero-field environment for polarized neutron experiment, carefully designed magnetic field is required.In this work, we demonstrate a zero-field sample chamber designed for polarized neutron experiment by utilizing both permalloy material and high-TC superconducting films. This design adopts a simple and low-maintenance ‘deep-well’ shape to achieve effective shielding. The study uses finite element simulation method to analyze the effect of dimensions on the magnetic field shielding performance of the device of the model, including height, arm length, opening radius, and superconductor distance. At optimal dimensions, the designed zero field chamber achieves an internal magnetic field integral of 0.67 G·cm along the neutron path under the geomagnetic field condition. The maximum neutron depolarization for 0.4 nm neutrons is 0.76%, which sufficient for general polarization analysis application. The finite element method simulation results are examined by neutron Bloch equation dynamics simulations and in-lab measurement . Based on the established effective zero-field shielding design, we further discuss the relationship between magnetic field shielding and the dimensions of the device. The application of the device to spectrometers and the future improvement in the device structure are also discussed.
      Corresponding author: Fan Qun-Chao, fanqunchao@mail.xhu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0406000), the National Natural Science Foundation of China (Grant Nos. 12075265, U2032219), the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2021B1515140016), the Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents, China (Grant No. 20191122), and the Guangdong Natural Science Funds for Distinguished Young Scholar, China (Grant No. 2021B1515020101).
    [1]

    Halpern O, Johnson M H 1939 Phys. Rev. 55 898Google Scholar

    [2]

    Moon R M, Riste T, Koehler W C 1969 Phys. Rev. 181 920Google Scholar

    [3]

    Kozhevnikov S V, Ott F, Radu F 2018 Phys. Part. Nuclei 49 308Google Scholar

    [4]

    Halpern O, Holstein T 1941 Phys. Rev. 59 960Google Scholar

    [5]

    童欣 2020 物理 49 765Google Scholar

    Tong X 2020 Physics 49 765Google Scholar

    [6]

    Tasset F 1989 Physica B: Condensed Matter 156–157 627

    [7]

    Brown P J, Forsyth J B, Tasset F Neutron polarimetry 1997 Proc. Royal Soc. London A: Math. Phys. Sci. 442 147Google Scholar

    [8]

    Janoschek M, Klimko S, Gähler R, Roessli B, Böni P 2007 Physica B: Condensed Matter 397 125Google Scholar

    [9]

    Tasset F, Lelièvre-Berna E, Roberts T W, Bourgeat-Lami E, Pujol S, Thomas M 1997 Physica B: Condensed Matter 241–243 177Google Scholar

    [10]

    Tasset F, Brown P J, Lelièvre-Berna E, Roberts T, Pujol S, Allibon J, Bourgeat-Lami E 1999 Physica B: Condensed Matter 267–268 69Google Scholar

    [11]

    Lelièvre-Berna E, Bourgeat-Lami E, Fouilloux P, Geffray B, Gibert Y, Kakurai K, Kernavanois N, Longuet B, Mantegezza F, Nakamura M, Pujol S, Regnault L P, Tasset F, Takeda M, Thomas M, Tonon X 2005 Physica B: Condensed Matter 356 131Google Scholar

    [12]

    Regnault L P, Geffray B, Fouilloux P, Longuet B, Mantegezza F, Tasset F, Lelièvre-Berna E, Bourgeat-Lami E, Thomas M, Gibert Y 2003 Physica B: Condensed Matter 335 255Google Scholar

    [13]

    Takeda M, Nakamura M, Kakurai K, Lelièvre-berna E, Tasset F, Regnault L P 2005 Physica B:Condensed Matter 356 136Google Scholar

    [14]

    Hutanu V, Luberstetter W, Bourgeat-Lami E, Meven M, Sazonov A, Steffen A, Heger G, Roth G, Lelièvre-Berna E 2016 Rev. Sci. Instrum. 87 105108Google Scholar

    [15]

    Wang T 2015 Ph. D. Dissertation (Bloomington: Indiana University)

    [16]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [17]

    Parnell S R, Kaiser H, Washington A L, Li F, Wang T, Baxter D V, Pynn R 2013 Physics Procedia 42 125Google Scholar

    [18]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [19]

    Seeger P A, Daemen L L 2001 Nucl. Instrum. Methods Phys. Res. , Sect. A 457 338Google Scholar

    [20]

    Dong Y C, Wang T H, Kreuzpaintner W, Liu X T, Li Z H, Kang Y D, Zhang J P, Tian L, Huang C Y, Bai B, Tong X 2022 Nucl. Sci. Tech. 33 145Google Scholar

  • 图 1  混合屏蔽深井式方案整体设计示意图 (a) 零场腔设计与磁场元件分布图; (b) 基于原型设计进行计算的磁场模拟结果示意图

    Figure 1.  Schematic diagram of hybrid shielding ‘deep well’ design: (a) Schematic diagram of design of zero field chamber (ZFC) and distribution of magnetic field elements; (b) schematic diagram of magnetic field simulation result based on prototype design.

    图 2  零磁腔三维有限元分析模型

    Figure 2.  Three-dimensional FEM model of ZFC

    图 3  零场腔磁场分布XZ平面截面图

    Figure 3.  XZ-plane cross-sectional view of magnetic field distribution of ZFC

    图 4  最优设计条件下零场腔内沿束流方向的磁场分布与极化演化 (a) 零场腔中子束流沿线磁场分布; (b) 零场腔内内中子束流沿行进方向的极化变化

    Figure 4.  Magnetic field distribution and polarization evolution in direction of beam path in ZFC under optimal conditions: (a) Magnetic field distribution of ZFC along the neutron beam direction; (b) polarization evolution along neutron beam direction inside the ZFC.

    图 5  不同高度条件对零场腔屏蔽性能的影响 (a)沿中子路径上的磁场分布对比; (b)零场腔内中子路径上的磁场积分随高度条件的变化

    Figure 5.  Influence of height conditions on shielding performance of ZFC: (a) Comparison of magnetic field distributions along neutron beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with height.

    图 11  不同坡莫合金材料厚度对零场腔屏蔽性能的影响 (a) 沿中子路径上的磁场分布对比; (b)零场腔内中子路径上的磁场积分随厚度条件的变化

    Figure 11.  Influence of permalloy thickness conditions on shielding performance of ZFC: (a) Comparison of magnetic field distributions along neutron beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with permalloy thickness.

    图 6  不同高度条件下的磁场分布XZ平面截面图 (a) h = 140 mm; (b) h = 200 mm; (c) h = 300 mm

    Figure 6.  XZ-plane cross-sectional view of magnetic field distribution under different height conditions: (a) h = 140 mm; (b) h = 200 mm; (c) h = 300 mm.

    图 7  不同半径条件对零场腔屏蔽性能的影响 (a)沿中子路径上的磁场分布对比; (b)零场腔内中子路径上的磁场积分随半径条件的变化

    Figure 7.  Influence of radius conditions on shielding performance of ZFC: (a) Comparison of magnetic field distributions along neutron beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with radius.

    图 8  不同臂长条件对零场腔屏蔽性能的影响 (a)沿中子路径上的磁场分布对比; (b)零场腔内中子路径上的磁场积分随臂长条件的变化

    Figure 8.  Influence of arm length conditions on shielding performance of ZFC: (a) Comparison of magnetic field distributions along neutron beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with arm length.

    图 9  超导体薄膜与零磁场腔端口的间距对零场腔屏蔽性能的影响 (a) 沿中子路径上的磁场分布对比; (b) 零场腔内中子路径上的磁场积分随超导体薄膜距离的变化

    Figure 9.  Influence on shielding performance of ZFC caused by distance between superconducting thin film and end of arm: (a) Comparison of magnetic field distributions along neutron beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with distance between superconducting thin film and end of the arm.

    图 10  不同间距条件下的磁场分布XZ平面截面图 (a) d = 1 mm; (b) d = 23 mm

    Figure 10.  XZ-plane cross-sectional view of magnetic field distribution under different distance conditions: (a) d = 1 mm; (b) d = 23 mm.

    图 12  FEM磁场模拟结果与实际测量结果的对比(屏蔽体两端口分别位于±151 mm处) (a)原型装置的磁场分布对比; (b)优化装置的磁场分布对比

    Figure 12.  Comparison of magnetic field distribution results between FEM simulation and actual measurement (Ends of arm of ZFC are located at ±151 mm): (a) Magnetic field distribution comparison of prototype; (b) magnetic field distribution comparison of optimized device.

    图 13  (a)优化前和(b)优化后零磁场腔的磁场分布XZ平面截面图

    Figure 13.  XZ-plane cross-sectional view of magnetic field distribution of ZFC (a) before and (b) after optimization.

    图 14  偏离中心线时沿中子行进方向上的磁场分布 (a) 偏离中心线5 mm时的磁场强度分布; (b)偏离中心线10 mm时的磁场强度分布

    Figure 14.  Distribution of magnetic field along neutron path when off-centerline: (a) Magnetic field distribution at 5 mm deviation from centerline; (b) magnetic field distribution at 10 mm deviation from centerline

    表 1  有限元模拟各材料物理性能定义

    Table 1.  Physical properties definition of different materials in FEM model.

    材料电导率 σ/(S·m–1)相对磁导率 μr
    空气01
    坡莫合金(80% Ni)$ 1.74\times {10}^{6} $$ 80000 $
    $ 1.12\times {10}^{7} $$ 4000 $
    $ 6.00\times {10}^{7} $1
    YBCO薄膜(自定义材料)$ 1\times {10}^{10} $$ 1\times {10}^{-10} $
    DownLoad: CSV
  • [1]

    Halpern O, Johnson M H 1939 Phys. Rev. 55 898Google Scholar

    [2]

    Moon R M, Riste T, Koehler W C 1969 Phys. Rev. 181 920Google Scholar

    [3]

    Kozhevnikov S V, Ott F, Radu F 2018 Phys. Part. Nuclei 49 308Google Scholar

    [4]

    Halpern O, Holstein T 1941 Phys. Rev. 59 960Google Scholar

    [5]

    童欣 2020 物理 49 765Google Scholar

    Tong X 2020 Physics 49 765Google Scholar

    [6]

    Tasset F 1989 Physica B: Condensed Matter 156–157 627

    [7]

    Brown P J, Forsyth J B, Tasset F Neutron polarimetry 1997 Proc. Royal Soc. London A: Math. Phys. Sci. 442 147Google Scholar

    [8]

    Janoschek M, Klimko S, Gähler R, Roessli B, Böni P 2007 Physica B: Condensed Matter 397 125Google Scholar

    [9]

    Tasset F, Lelièvre-Berna E, Roberts T W, Bourgeat-Lami E, Pujol S, Thomas M 1997 Physica B: Condensed Matter 241–243 177Google Scholar

    [10]

    Tasset F, Brown P J, Lelièvre-Berna E, Roberts T, Pujol S, Allibon J, Bourgeat-Lami E 1999 Physica B: Condensed Matter 267–268 69Google Scholar

    [11]

    Lelièvre-Berna E, Bourgeat-Lami E, Fouilloux P, Geffray B, Gibert Y, Kakurai K, Kernavanois N, Longuet B, Mantegezza F, Nakamura M, Pujol S, Regnault L P, Tasset F, Takeda M, Thomas M, Tonon X 2005 Physica B: Condensed Matter 356 131Google Scholar

    [12]

    Regnault L P, Geffray B, Fouilloux P, Longuet B, Mantegezza F, Tasset F, Lelièvre-Berna E, Bourgeat-Lami E, Thomas M, Gibert Y 2003 Physica B: Condensed Matter 335 255Google Scholar

    [13]

    Takeda M, Nakamura M, Kakurai K, Lelièvre-berna E, Tasset F, Regnault L P 2005 Physica B:Condensed Matter 356 136Google Scholar

    [14]

    Hutanu V, Luberstetter W, Bourgeat-Lami E, Meven M, Sazonov A, Steffen A, Heger G, Roth G, Lelièvre-Berna E 2016 Rev. Sci. Instrum. 87 105108Google Scholar

    [15]

    Wang T 2015 Ph. D. Dissertation (Bloomington: Indiana University)

    [16]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [17]

    Parnell S R, Kaiser H, Washington A L, Li F, Wang T, Baxter D V, Pynn R 2013 Physics Procedia 42 125Google Scholar

    [18]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [19]

    Seeger P A, Daemen L L 2001 Nucl. Instrum. Methods Phys. Res. , Sect. A 457 338Google Scholar

    [20]

    Dong Y C, Wang T H, Kreuzpaintner W, Liu X T, Li Z H, Kang Y D, Zhang J P, Tian L, Huang C Y, Bai B, Tong X 2022 Nucl. Sci. Tech. 33 145Google Scholar

  • [1] Hao Peng, Zhang Li-Li, Ding Ming-Ming. Finite element analysis of inertial migration of polymer vesicles in microtubule flow. Acta Physica Sinica, 2022, 71(18): 188701. doi: 10.7498/aps.71.20220606
    [2] Li Ting, Lu Xiao-Tong, Zhang Qiang, Kong De-Huan, Wang Ye-Bing, Chang Hong. Evaluation of blackbody-radiation frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [3] Wang Ri-Xing, Ye Hua, Wang Li-Juan, Ao Zhang-Hong. Magnetization reversal and precession in spin valve structures with a perpendicular free layer and a tilted polarizer layer. Acta Physica Sinica, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [4] Zhao Hong-Yu, Wang Di, Wei Zhi, Jin Guang-Yong. Finite element analysis and experimental study on electrical damage of silicon photodiode induced by millisecond pulse laser. Acta Physica Sinica, 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [5] Jiang Shan-Shan, Liu Yan, Xing Er-Jun. Finite element analysis and design of few mode fiber with low differential mode delay. Acta Physica Sinica, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [6] Cao Chao, Wang Sheng, Tang Ke, Yin Wei, Wu Yang. Comparison of two approaches to magnetic field quantification by polarized neutron images. Acta Physica Sinica, 2014, 63(18): 182801. doi: 10.7498/aps.63.182801
    [7] Yu Ge, Han Qi-Gang, Li Ming-Zhe, Jia Xiao-Peng, Ma Hong-An, Li Yue-Fen. Finite element analysis of the high-pressure tungsten carbide radius-anvil. Acta Physica Sinica, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [8] Zhao Jian-Tao, Feng Guo-Ying, Yang Huo-Mu, Tang Chun, Chen Nian-Jiang, Zhou Shou-Huan. Analysis of thermal effect and its influence on output power of thin disk laser. Acta Physica Sinica, 2012, 61(8): 084208. doi: 10.7498/aps.61.084208
    [9] Zhong Guang-Ming, Du Xiao-Qing, Tang Jie-Ling, Dong Xiang-Kun, Lei Xiao-Hua, Chen Wei-Min. Analysis of influencing factors on current spreading of flip-chip light-emitting diodes (LEDs). Acta Physica Sinica, 2012, 61(12): 127803. doi: 10.7498/aps.61.127803
    [10] Han Qi-Gang, Ma Hong-An, Xiao Hong-Yu, Li Rui, Zhang Cong, Li Zhan-Chang, Tian Yu, Jia Xiao-Peng. Finite element method study on the temperature distribution in the cell of large single crystal diamond. Acta Physica Sinica, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [11] Wang Tian-Qi, Yu Zhong-Yuan, Liu Yu-Min, Lu Peng-Fei. Analysis of strain energy and relaxation degree in different-shaped quantum dots using finite element method. Acta Physica Sinica, 2009, 58(8): 5618-5623. doi: 10.7498/aps.58.5618
    [12] Han Qi-Gang, Jia Xiao-Peng, Ma Hong-An, Li Rui, Zhang Cong, Li Zhan-Chang, Tian Yu. Finite element simulations of thermal-stress on cemented tungsten carbide anvil used in cubic high pressure apparatus. Acta Physica Sinica, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [13] Zhou Wang-Min, Cai Cheng-Yu, Wang Chong-Yu, Yin Shu-Yuan. Finite element analysis on stress distribution in buried quantum dots. Acta Physica Sinica, 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [14] Zhao Yan, Shen Zhong-Hua, Lu Jian, Ni Xiao-Wu. Finite element simulation of laser-generated circumferential waves in hollow cylinder. Acta Physica Sinica, 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [15] Liang Shuang, Lü Yan-Wu. The calculation of electronic structure in GaN/AlN quantum dots with finite element method. Acta Physica Sinica, 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [16] Guo Xiao-Yun, Shi Cai-Tu, Zhang Jiu-Chang, Xin Hong-Bing. Characteristics of synchrotron radiation and the structure of the permanent magnetic wiggler. Acta Physica Sinica, 2006, 55(4): 1731-1735. doi: 10.7498/aps.55.1731
    [17] Wan Hong, Xie Li-Qiang, Wu Xue-Zhong, Liu Xi-Cong. Magnetoelectric effect of the TbDyFe/PZT laminated composite. Acta Physica Sinica, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [18] Wan Hong, Shen Ren-Fa, Wu Xue-Zhong. A theoretical study on symmetrical magnetostrictive/piezoelectric laminated composite. Acta Physica Sinica, 2005, 54(3): 1426-1430. doi: 10.7498/aps.54.1426
    [19] Wang Xiang-Qi, Feng De-Ren, Shang Lei, Pei Yuan-Ji, He Ning, Zhao Tao. Measurement and analysis of the pulsed magnetic field phase lag in the ceramic case. Acta Physica Sinica, 2004, 53(12): 4319-4324. doi: 10.7498/aps.53.4319
    [20] WO TSANG-SHENG, TAI KWANG-SI, LIU KONG-CHUN, TING YU. AN EXPERIMENTAL STUDY OF PROTON FREE PRECESSION IN A WEAK MAGNETIC FIELD AND ITS APPLICATION TO FIELD WORK. Acta Physica Sinica, 1965, 21(6): 1175-1187. doi: 10.7498/aps.21.1175
Metrics
  • Abstract views:  1646
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2023
  • Accepted Date:  29 April 2023
  • Available Online:  13 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回