Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on synthesis of Cu3Mo2O9/MoO3 nanocomposite and trimethylamine gas sensing properties

Bi Wen-Jie Yang Shuang Zhou Jing Jin Wei Chen Wen

Citation:

Research on synthesis of Cu3Mo2O9/MoO3 nanocomposite and trimethylamine gas sensing properties

Bi Wen-Jie, Yang Shuang, Zhou Jing, Jin Wei, Chen Wen
PDF
HTML
Get Citation
  • Aquatic products contain an incredibly high nutritional value for the human body and gradually become indispensable ingredients on the Chinese table. Trimethylamine (TMA) from the deterioration of aquatic products can serve as an indicator to measure fish freshness. It is a challenge to develop an instant, fast, convenient, and efficient gas sensor for fish freshness. In this study, a novel Cu3Mo2O9/MoO3 composite gas sensing material is prepared by introducing Cu3Mo2O9 nanoparticles on the surface of MoO3 nanobelts. The results of SEM and TEM images show that the Cu3Mo2O9 nanoparticles are uniformly dispersed. Then, the TMA sensing performance of a resistance-type gas sensor based the prepared Cu3Mo2O9/MoO3 composite is tested at optimal operating temperature (240 °C). the results show that the sensor possesses good response (13.9) at low concentration (5×10–6), with excellent low detection limit (2×10–7). The response time is also significantly shortened. The high sensing performance of Cu3Mo2O9/MoO3 composite is attributed to the heterojunction interface, which promotes the separation of electrons from holes through its strong oxygen adsorption and catalytic effect. This significantly improves the electron transport properties and gas sensing characteristics of the composite material. Electrons flow from MoO3 nanoribbons to Cu3Mo2O9, and the Fermi level reaches equilibrium. This process results in the formation of an electron loss layer underneath MoO3, and the charge transfer channel narrows, which is consistent with previous result. When trimethylamine dissociates on the nanoribbons to release electrons, the balance of the fermi lever is disrupted, and electrons flow from MoO3 to Cu3Mo2O9. As a result, the charge transfer channel becomes thinner, resulting in resistance modulation and increased sensitivity. In addition, the enhancement of trimethylamine sensing performance of Cu3Mo2O9/MoO3 nanocomposite can be explained by the enhancement of gas adsorption and diffusion: MoO3 nanoribbons as a skeleton can effectively disperse Cu3Mo2O9 particles and increase the adsorption capacity of gas molecules. And the enhanced response of Cu3Mo2O9/MoO3 may be due to the good catalytic effect of Cu3Mo2O9, which is conducive to oxygen adsorption. This work provides a new strategy for preparing high-performance MoO3-based gas sensing materials.
      Corresponding author: Zhou Jing, zhoujing@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62171331), the Open Fund of the Sanya Science and Education Innovation Park of Wuhan University of Technology, China (Grant No. 2020KF0026), and the Hubei Provincial Natural Science Foundation of China (Grant No. 2020CFB188).
    [1]

    Wang T S, Zhang S F, Yu Q, Wang S P, Sun P, Lu H Y, Liu F M, Yan X, Lu G Y 2018 ACS Appl. Mater. Interfaces 10 38Google Scholar

    [2]

    Li C, Feng C H, Qu F D, Liu J, Zhu L H, Lin Y, Wang Y, Li F, Zhou J R, Ruan S P 2015 Sens. Actuators B 207 90Google Scholar

    [3]

    Yoon H C, Liang X S, Kang Y C, Lee J H 2015 Sens. Actuators A 207 330Google Scholar

    [4]

    Chu X, Liang S, Chen T 2010 Mater. Chem. Phys. 123 396Google Scholar

    [5]

    Chu X F, Liang S M, Sun W Q 2010 Sens. Actuators, A 148 399Google Scholar

    [6]

    Adamu B I, Falak A, Tian Y, Tan X H, Meng X M, Chen P P, Wang H F, Chu W G 2020 ACS Appl. Mater. Interfaces 12 8411Google Scholar

    [7]

    Xu K, Duan K L, Tang Q, Zhu Q, Zhao W, Yu W, Yang Y, Yu T, Yuan G L 2019 Cryst. Eng. Comm 21 5834Google Scholar

    [8]

    Li Z Q, Song P, Yang Z X, Wang Q 2017 Ceram. Int. 44 3364Google Scholar

    [9]

    Meng D, Li R X, Zhang L, Wang G S, Zhang Y, San X G, Wang X L 2022 Sens. Actuators. 4 87Google Scholar

    [10]

    Wang L P, Jin Z, Luo T, Ding Y, Liu J H, Wang X F, Li M Q 2019 New J. Chem. 43 3619Google Scholar

    [11]

    Ahn H, Noh H J, Kim S B, Overfelt R A, Yoon Y S, KimD J 2010 Mater. Chem. Phys. 124 563Google Scholar

    [12]

    Zhang S, Song P, Zhang J, Li Z Q, Yang Z X, Wang Q 2016 RSC Adv. 6 50423Google Scholar

    [13]

    Kathirvelan J, Vijayaraghavan R, Thomas A 2017 Sens. Rev. 37 147Google Scholar

    [14]

    Gou Y, Yang L, Liu Z, Asiri A M, Hu J, Sun X P 2018 Inorg. Nano-Met. Chem. 57 147Google Scholar

    [15]

    Wang W X, Jin W, Yang S, Jian Z L, Chen W 2021 Sens. Actuators B 15 129583Google Scholar

    [16]

    Dutta D P, Rathore A, Ballal A, Tyagi A K 2015 RSC Adv. 10 10389Google Scholar

    [17]

    Pan H, Jin L, Su H, Zhang B B, Zhang L, Zhang H T, Yang W Q 2017 J. Alloys Compd. 695 2965Google Scholar

    [18]

    Shen S K, Zhang X F, Cheng X L, Xu Y M, Gao S, Zhao H, Zhou X, Huo L H 2019 ACS Appl. Nano Mater. 2 8016Google Scholar

    [19]

    薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅 2014 物理学报 63 176803Google Scholar

    Bo X Q, Liu C B, Li H Y, Liu L, Guo X, Liu Z, Liu L L, Su C 2014 Acta Phys. Sin. 63 176803Google Scholar

    [20]

    韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波 2022 物理学报 71 010701Google Scholar

    Han D, Liu Z H, Liu L L, Han X M, Liu D M, Gao K, Sang S B 2022 Acta Phys. Sin. 71 010701Google Scholar

    [21]

    Wang J X, Zhou Q, Peng S D, Xu L N, Zeng W 2020 Front. Nanochem. 8 339Google Scholar

    [22]

    Sui L L, Xu Y M, Zhang X F, Cheng X L, Gao S, Zhao H, Cai Z, Huo L H 2015 Sens. Actuators, B 208 73Google Scholar

    [23]

    秦玉香, 王飞, 沈万江, 胡明 2012 物理学报 61 057301Google Scholar

    Qin Y X, Wang F, Shen W J, Hu M 2012 Acta Phys. Sin. 61 057301Google Scholar

    [24]

    刘志福, 李培, 程铁栋, 黄文 2020 物理学报 69 248101Google Scholar

    Liu Z F, Li P, Cheng T D, Huang W 2020 Acta Phys. Sin. 69 248101Google Scholar

    [25]

    李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可 2019 物理学报 69 198101Google Scholar

    Li D K, He B Y, Chen K Q, Pi M Y, Cui Y T, Zhang D K 2019 Acta Phys. Sin. 69 198101Google Scholar

    [26]

    艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬 2019 物理学报 68 197101Google Scholar

    Ai W, Hu X H, Pan L, Chen C C, Wang Y F, Shen X D 2019 Acta Phys. Sin. 68 197101Google Scholar

    [27]

    Sakaushi K, Thomas J, Kaskel S, Eckert J 2013 Chem. Mater. 25 2557Google Scholar

    [28]

    Rothschild A, Komem Y 2004 Appl. Surf. Sci 95 6374Google Scholar

    [29]

    Yao M S, Tang W X, Wang G E, Nath B, Xu G 2016 Adv. Mater. 28 5229Google Scholar

    [30]

    Lupan O, Postica V, Hoppe M, Wolff N, Polonskyi O, Pauporté T, Viana B, Majérus O, Kienle L, Faupel F, Adelung R 2018 Nanoscale 10 14107Google Scholar

    [31]

    Majhi S M, Lee H J, Choi H N, Cho H Y, Kim J S, Lee C R, Yu Y T 2019 Cryst. Eng. Comm 21 5084Google Scholar

    [32]

    Gao X, Li Y Q, Zeng W, Zhang C F, Wei Y M 2017 J. Mater. Sci. Mater. Electron. 28 18781Google Scholar

    [33]

    Ji H C, Zeng W, Li Y Q 2019 Physica E 114 113646Google Scholar

    [34]

    Lü J X, Chen X L, Chen S S, Li H, Deng H 2019 J. Electroanal. Chem. 842 161Google Scholar

    [35]

    Li Z Q, Wang W J, Zhao Z C, Liu X R, Song P 2017 Mater. Sci. Semicond. Process. 66 33Google Scholar

    [36]

    Li Z Q, Wang W J, Zhao Z F, Liu X R, Song P 2017 RSC Adv. 7 28366Google Scholar

    [37]

    Yang S, Liu Y L, Chen W, Jin W, Zhou J, Zhang H, Galina S Z 2016 Sens. Actuators, B 226 478Google Scholar

    [38]

    Zhang F D, Dong X, Cheng X L, Xu Y M, Zhang X F, Huo L H 2019 ACS Appl. Mater. Interfaces 11 11755Google Scholar

  • 图 1  (a) MoO3纳米带、Cu3Mo2O9颗粒及Cu3Mo2O9/MoO3纳米复合材料的XRD图谱; (b) Cu3Mo2O9/MoO3纳米复合材料的TEM图像; (c)—(e) 元素映射图像: Cu3Mo2O9/MoO3纳米复合材料的Mo, O, Cu图像

    Figure 1.  (a) XRD patterns of MoO3 nanobelts, Cu3Mo2O9 particle, and Cu3Mo2O9/MoO3 nanocomposites; (b) TEM image of Cu3Mo2O9/MoO3 nanocomposites; (c)–(e) Mo, O and Cu element mapping images of Cu3Mo2O9/MoO3 nanocomposites.

    图 2  (a), (b) 纯MoO3纳米带和Cu3Mo2O9/MoO3纳米复合材料的SEM图像; (c) Cu3Mo2O9/MoO3纳米复合材料的TEM图像 (插图为MoO3纳米带和Cu3Mo2O9颗粒的HRTEM图)

    Figure 2.  (a), (b) SEM image of pure MoO3 nanobelts and Cu3Mo2O9/MoO3 nanocomposites; (c) TEM image of Cu3Mo2O9/MoO3 nanocomposites (Inset shows HRTEM patten of the MoO3 nanobelts and Cu3Mo2O9 particle).

    图 3  MoO3与Cu3Mo2O9/MoO3复合材料的XPS图像 (a) 全谱; (b) Cu 2p; (c) Mo 3d; (d) O 1s

    Figure 3.  XPS images of MoO3 and Cu3Mo2O9/MoO3 composites: (a) Full spectrum; (b) Cu 2p; (c) Mo 3d; (d) O 1s.

    图 4  (a) 不同工作温度下MoO3纳米带、Cu3Mo2O9颗粒和Cu3Mo2O9/MoO3纳米复合材料对体积分数为5×10–6 的TMA的响应; (b) 190 ℃下MoO3纳米带、Cu3Mo2O9颗粒和Cu3Mo2O9/MoO3纳米复合材料对不同浓度TMA的响应折线图

    Figure 4.  (a) Response of MoO3 nanobelts, Cu3Mo2O9 particle, and Cu3Mo2O9/MoO3 nanocomposites to TMA with a volume fraction of 5×10–6 at different working temperatures; (b) the corresponding line chart of MoO3 nanobelts, Cu3Mo2O9 particle, and Cu3Mo2O9/MoO3 nanocomposites to different concentrations of TMA at 190 ℃.

    图 5  (a) MoO3纳米带、Cu3Mo2O9颗粒和Cu3Mo2O9/MoO3纳米复合材料在190 ℃下对不同浓度TMA的实时响应/恢复曲线; (b) Cu3Mo2O9/MoO3纳米复合材料对体积分数为5×10–6的TMA的响应/恢复时间

    Figure 5.  (a) Real-time response/recovery curves of MoO3 nanobelts, Cu3Mo2O9 particle, and Cu3Mo2O9/MoO3 nanocomposites to different concentrations of TMA at 190 ℃; (b) response/recovery time of Cu3Mo2O9/MoO3 nanocomposites to TMA with a volume fraction of 5×10–6.

    图 6  Cu3Mo2O9/MoO3纳米复合材料在190 ℃下对体积分数为5×10–6 的TMA的动态响应(a)及长期稳定性(b)

    Figure 6.  Dynamic response (a) and long-term stability (b) of Cu3Mo2O9/MoO3 nanocomposites to trimethylamine with a volume fraction of 5×10–6 at 190 ℃.

    图 7  Cu3Mo2O9/MoO3纳米复合材料对不同气体的响应比较

    Figure 7.  Response comparison of Cu3Mo2O9/MoO3 nanocomposites to various.

    图 8  Cu3Mo2O9/MoO3-3在190 ℃, 20%—60%相对湿度范围内对TMA的响应情况

    Figure 8.  Response of Cu3Mo2O9/MoO3-3 composite sensor to trimethylamine at 190 ℃ and 20%–60% relative humidity.

    图 9  (a) Cu3Mo2O9/MoO3复合材料的紫外可见吸收光谱; (b) 用于MoO3纳米带、Cu3Mo2O9颗粒和Cu3Mo2O9/MoO3纳米复合材料带隙测量的Tauc图

    Figure 9.  (a) UV-vis absorption spectra of Cu3Mo2O9/MoO3 nanocomposites; (b) Tauc plot for band gap measurement of MoO3 nanobelts, Cu3Mo2O9 particle, and Cu3Mo2O9/MoO3 nanocomposites.

    图 10  (a), (d), (g) Au, Cu3Mo2O9和MoO3的UPS光谱; (b), (e), (h) 计算的Ecut-off值; (c), (f), (i) 计算的EFermi

    Figure 10.  (a), (d), (g) UPS spectra of Au, Cu3Mo2O9 and MoO3; (b), (e), (h) calculated Ecut-off values, (c), (f), (i) calculated EFermi values.

    图 11  Cu3Mo2O9/MoO3纳米复合材料体系的能带图 (a) 平衡前 (b) 平衡后 (Evac, 真空水平; Ef, 费米能级; Ec, 导带底部; Ev, 价电子带顶部; Eg, 带隙). (c) Cu3Mo2O9/MoO3纳米复合材料暴露于TMA的示意图

    Figure 11.  Energy band diagrams of Cu3Mo2O9/MoO3 nanocomposites system: (a) Before and (b) after equilibrium (Evac, the vacuum level; Ef, Fermi level; Ec, the bottom of conduction band; Ev, the top of valence band; Eg, band gap). (c) Schematic diagram of Cu3Mo2O9/MoO3 nanocomposites exposed to TMA.

    表 1  不同材料对TMA的气敏性能对比

    Table 1.  Comparison of gas-sensing performance of gas towards TMA.

    材料温度/℃检测限/(10–6)S5 ppm/(Rair·Rgas–1)响应/恢复时间/sRef.
    W-MoO32805约46/11[35]
    Ce-MoO2405约510/20[36]
    MoO3 nanobelts10011[37]
    MoO3/NiO35013.59[7]
    CoMoO4/MoO32205约9.09/10[8]
    MoO3/Bi2Mo3O1270约3.37.1/—[38]
    Cu3Mo2O9/MoO31900.213.97/25本文
    DownLoad: CSV
  • [1]

    Wang T S, Zhang S F, Yu Q, Wang S P, Sun P, Lu H Y, Liu F M, Yan X, Lu G Y 2018 ACS Appl. Mater. Interfaces 10 38Google Scholar

    [2]

    Li C, Feng C H, Qu F D, Liu J, Zhu L H, Lin Y, Wang Y, Li F, Zhou J R, Ruan S P 2015 Sens. Actuators B 207 90Google Scholar

    [3]

    Yoon H C, Liang X S, Kang Y C, Lee J H 2015 Sens. Actuators A 207 330Google Scholar

    [4]

    Chu X, Liang S, Chen T 2010 Mater. Chem. Phys. 123 396Google Scholar

    [5]

    Chu X F, Liang S M, Sun W Q 2010 Sens. Actuators, A 148 399Google Scholar

    [6]

    Adamu B I, Falak A, Tian Y, Tan X H, Meng X M, Chen P P, Wang H F, Chu W G 2020 ACS Appl. Mater. Interfaces 12 8411Google Scholar

    [7]

    Xu K, Duan K L, Tang Q, Zhu Q, Zhao W, Yu W, Yang Y, Yu T, Yuan G L 2019 Cryst. Eng. Comm 21 5834Google Scholar

    [8]

    Li Z Q, Song P, Yang Z X, Wang Q 2017 Ceram. Int. 44 3364Google Scholar

    [9]

    Meng D, Li R X, Zhang L, Wang G S, Zhang Y, San X G, Wang X L 2022 Sens. Actuators. 4 87Google Scholar

    [10]

    Wang L P, Jin Z, Luo T, Ding Y, Liu J H, Wang X F, Li M Q 2019 New J. Chem. 43 3619Google Scholar

    [11]

    Ahn H, Noh H J, Kim S B, Overfelt R A, Yoon Y S, KimD J 2010 Mater. Chem. Phys. 124 563Google Scholar

    [12]

    Zhang S, Song P, Zhang J, Li Z Q, Yang Z X, Wang Q 2016 RSC Adv. 6 50423Google Scholar

    [13]

    Kathirvelan J, Vijayaraghavan R, Thomas A 2017 Sens. Rev. 37 147Google Scholar

    [14]

    Gou Y, Yang L, Liu Z, Asiri A M, Hu J, Sun X P 2018 Inorg. Nano-Met. Chem. 57 147Google Scholar

    [15]

    Wang W X, Jin W, Yang S, Jian Z L, Chen W 2021 Sens. Actuators B 15 129583Google Scholar

    [16]

    Dutta D P, Rathore A, Ballal A, Tyagi A K 2015 RSC Adv. 10 10389Google Scholar

    [17]

    Pan H, Jin L, Su H, Zhang B B, Zhang L, Zhang H T, Yang W Q 2017 J. Alloys Compd. 695 2965Google Scholar

    [18]

    Shen S K, Zhang X F, Cheng X L, Xu Y M, Gao S, Zhao H, Zhou X, Huo L H 2019 ACS Appl. Nano Mater. 2 8016Google Scholar

    [19]

    薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅 2014 物理学报 63 176803Google Scholar

    Bo X Q, Liu C B, Li H Y, Liu L, Guo X, Liu Z, Liu L L, Su C 2014 Acta Phys. Sin. 63 176803Google Scholar

    [20]

    韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波 2022 物理学报 71 010701Google Scholar

    Han D, Liu Z H, Liu L L, Han X M, Liu D M, Gao K, Sang S B 2022 Acta Phys. Sin. 71 010701Google Scholar

    [21]

    Wang J X, Zhou Q, Peng S D, Xu L N, Zeng W 2020 Front. Nanochem. 8 339Google Scholar

    [22]

    Sui L L, Xu Y M, Zhang X F, Cheng X L, Gao S, Zhao H, Cai Z, Huo L H 2015 Sens. Actuators, B 208 73Google Scholar

    [23]

    秦玉香, 王飞, 沈万江, 胡明 2012 物理学报 61 057301Google Scholar

    Qin Y X, Wang F, Shen W J, Hu M 2012 Acta Phys. Sin. 61 057301Google Scholar

    [24]

    刘志福, 李培, 程铁栋, 黄文 2020 物理学报 69 248101Google Scholar

    Liu Z F, Li P, Cheng T D, Huang W 2020 Acta Phys. Sin. 69 248101Google Scholar

    [25]

    李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可 2019 物理学报 69 198101Google Scholar

    Li D K, He B Y, Chen K Q, Pi M Y, Cui Y T, Zhang D K 2019 Acta Phys. Sin. 69 198101Google Scholar

    [26]

    艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬 2019 物理学报 68 197101Google Scholar

    Ai W, Hu X H, Pan L, Chen C C, Wang Y F, Shen X D 2019 Acta Phys. Sin. 68 197101Google Scholar

    [27]

    Sakaushi K, Thomas J, Kaskel S, Eckert J 2013 Chem. Mater. 25 2557Google Scholar

    [28]

    Rothschild A, Komem Y 2004 Appl. Surf. Sci 95 6374Google Scholar

    [29]

    Yao M S, Tang W X, Wang G E, Nath B, Xu G 2016 Adv. Mater. 28 5229Google Scholar

    [30]

    Lupan O, Postica V, Hoppe M, Wolff N, Polonskyi O, Pauporté T, Viana B, Majérus O, Kienle L, Faupel F, Adelung R 2018 Nanoscale 10 14107Google Scholar

    [31]

    Majhi S M, Lee H J, Choi H N, Cho H Y, Kim J S, Lee C R, Yu Y T 2019 Cryst. Eng. Comm 21 5084Google Scholar

    [32]

    Gao X, Li Y Q, Zeng W, Zhang C F, Wei Y M 2017 J. Mater. Sci. Mater. Electron. 28 18781Google Scholar

    [33]

    Ji H C, Zeng W, Li Y Q 2019 Physica E 114 113646Google Scholar

    [34]

    Lü J X, Chen X L, Chen S S, Li H, Deng H 2019 J. Electroanal. Chem. 842 161Google Scholar

    [35]

    Li Z Q, Wang W J, Zhao Z C, Liu X R, Song P 2017 Mater. Sci. Semicond. Process. 66 33Google Scholar

    [36]

    Li Z Q, Wang W J, Zhao Z F, Liu X R, Song P 2017 RSC Adv. 7 28366Google Scholar

    [37]

    Yang S, Liu Y L, Chen W, Jin W, Zhou J, Zhang H, Galina S Z 2016 Sens. Actuators, B 226 478Google Scholar

    [38]

    Zhang F D, Dong X, Cheng X L, Xu Y M, Zhang X F, Huo L H 2019 ACS Appl. Mater. Interfaces 11 11755Google Scholar

  • [1] Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2. Acta Physica Sinica, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] Zhang Sheng-Yuan, Xia Kang-Long, Zhang Mao-Lin, Bian Ang, Liu Zeng, Guo Yu-Feng, Tang Wei-Hua. Self-powered dual-mode UV detector based on GaN/(BA)2PbI4 heterojunction. Acta Physica Sinica, 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [3] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [4] Wang Wan-Yu, Shi Kai-Xi, Li Jin-Hua, Chu Xue-Ying, Fang Xuan, Kuang Shang-Qi, Xu Guo-Hua. Effect of MoO3-overlayer on MoS2-based photovoltaic photodetector performance. Acta Physica Sinica, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [5] Li Lei, Zhi Yu-Song, Zhang Mao-Lin, Liu Zeng, Zhang Shao-Hui, Ma Wan-Yu, Xu Qiang, Shen Gao-Hui, Wang Xia, Guo Yu-Feng, Tang Wei-Hua. Dual-band and dual-mode ultraviolet photodetection characterizations of Ga2O3/Al0.1Ga0.9N homo-type heterojunction. Acta Physica Sinica, 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [6] Dong Yi-Meng, Sun Yong-Jiao, Hou Yu-Chen, Wang Bing-Liang, Lu Zhi-Yuan, Zhang Wen-Dong, Hu Jie. Preparation and room-temperature NO2 sensitivity of SnO2/ZnS heterojunctions gas sensor. Acta Physica Sinica, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [7] Han Dan, Liu Zhi-Hua, Liu Lu-Lu, Han Xiao-Mei, Liu Dong-Ming, Zhuo Kai, Sang Sheng-Bo. Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene. Acta Physica Sinica, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [8] Zhang Ru-Xuan, Zong Xiao-Hang, Yu Ting-Ting, Ge Yi-Xuan, Hu Shi, Liang Wen-Jie. Detection and identification of gas components based on nano sensor array. Acta Physica Sinica, 2022, 71(18): 180702. doi: 10.7498/aps.71.20220955
    [9] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [10] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [11] Liu Chuan-Chuan, Hao Fei-Xiang, Yin Yue-Wei, Li Xiao-Guang. Photovoltaic effect and photo-assisted diode behavior in Pt/BiFeO3/Nb-doped SrTiO3 heterojunction. Acta Physica Sinica, 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [12] Ai Wen, Hu Xiao-Hui, Pan Lin, Chen Chang-Chun, Wang Yi-Feng, Shen Xiao-Dong. Sensing performance of two-dimensional WTe2-based gas sensors. Acta Physica Sinica, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [13] Zhang Qiang, Wang Jian-Yuan, Luo Bing-Cheng, Xing Hui, Jin Ke-Xin, Chen Chang-Le. Rectifying behavior and photovoltage effect in La1.3Sr1.7Mn2O7/SrTiO3-Nb heterostructure. Acta Physica Sinica, 2016, 65(10): 107301. doi: 10.7498/aps.65.107301
    [14] Wei Ji-Zhou, Zhang Ming, Deng Hao-Liang, Chu Shang-Jie, Du Min-Yong, Yan Hui. Preparation and exchange bias effects of Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3 heterostructures. Acta Physica Sinica, 2015, 64(8): 088101. doi: 10.7498/aps.64.088101
    [15] Han Dian-Rong, Wang Lu, Luo Cheng-Lin, Zhu Xing-Feng, Dai Ya-Fei. Torsional mechanical properties of (n, n)-(2n, 0) carbon nanotubes heterojunction. Acta Physica Sinica, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [16] Qin Yu-Xiang, Liu Kai-Xuan, Liu Chang-Yu, Sun Xue-Bin. P-type conductivity and NO2 sensing properties for V-doped W18O49 nanowires at room temperature. Acta Physica Sinica, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [17] Yang Shi-Hai, Jin Ke-Xin, Wang Jing, Luo Bing-Cheng, Chen Chang-Le. Rectifying behavior and photocarrier injection effect in BaTiO3/p-Si heterostructure. Acta Physica Sinica, 2013, 62(14): 147305. doi: 10.7498/aps.62.147305
    [18] Zhang Xin, Zhang Xiao-Zhong, Tan Xin-Yu, Yu Yi, Wan Cai-Hua. Enhancing photovoltaic effect of Co2-C98/Al2O3/Si heterostructures by Al2O3. Acta Physica Sinica, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [19] Chen Peng, Jin Ke-Xin, Chen Chang-Le, Tan Xing-Yi. Rectifying behavior and photovoltaic effect in La0.88 Te0.12 MnO3/Si heterostructure. Acta Physica Sinica, 2011, 60(6): 067303. doi: 10.7498/aps.60.067303
    [20] Li Tong, Li Chi-Ping, Zhang Ming, Wang Bo, Yan Hui. Rectifying characteristics of La1-xSrxMnO3/TiO2(x=0.2, 0.15, 0.04) pn heterojunctions. Acta Physica Sinica, 2007, 56(7): 4132-4136. doi: 10.7498/aps.56.4132
Metrics
  • Abstract views:  1531
  • PDF Downloads:  41
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2023
  • Accepted Date:  24 May 2023
  • Available Online:  20 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回