Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure

Gao Wei Luo Yi-Fan Xing Yu Ding Peng Chen Bin-Hui Han Qing-Yan Yan Xue-Wen Zhang Cheng-Yun Dong Jun

Citation:

Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure

Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun
PDF
HTML
Get Citation
  • Building core-shell structures are widely used to enhance and regulate the luminescence properties of rare-earth-doped micro/nano materials. In this work, a variety of different NaErF4 core-shell and core-shell-shell nanocrystals are successfully constructed based on high temperature co-precipitation method by epitaxial growth technology. The upconversion red emission intensities of Er3+ ions in different core-shell structures are effectively enhanced by regulating their structures and doping ions. The experimental structures show that the constructed core-shell nanocrystals each have a hexagonal phase structure, and core-shell structure of about 40 nm. In the near infrared 980 nm laser excitation, the NaErF4 core-shell nanocrystal shows a strong single-band red emission. And the single-band red emission intensity of Er3+ ions is enhanced through constructing the NaErF4@NaYbF4:2%Er3+ core-shell structure. The experimental results show that red emission intensity of Er3+ ions is about 1.4 times higher than that of the NaErF4@NaYbF4 core-shell structure by constructing the NaErF4@NaYbF4:2%Er3+ core-shell structures under 980 nm excitation, and its red/green emission intensity ratio increases from 5.4 to 6.5. Meanwhile, when NaErF4@NaYbF4:2%Er3+ core-shell structure recoats the NaYF4 inert shell and is added with a small quantity of Tm3+ ions, their red emission intensities of Er3+ ions are 23.2 times and 40.3 times that of NaErF4@NaYbF4 core-shell structures, and their red/green emission intensity ratios reach 7.5 and 10.2, respectively. The red emission enhancement of Er3+ ions is mainly caused by bidirectional energy transfer process of high excitation energy of Yb3+ ions and energy trapping center of Tm3+ ions which effectively change the density of population of luminescent energy levels of Er3+ ions. Furthermore, the coated NaYF4 inert shell also effectively weakens the surface quenching effect of nanocrystals. The mechanisms of red enhancement in different core-shell structures are discussed based on the spectral properties, the process of interion energy transfer, and luminescence kinetics. The constructed NaErF4@NaYbF4:2%Er3+@NaYF4 core-shell structures with high-efficiency red emission in this work have great potential applications in the fields of colorful anti-counterfeiting, display and biological imaging.
      Corresponding author: Gao Wei, gaowei@xupt.edu.cn ; Dong Jun, dongjun@xupt.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 12274341, 12004304, 12104366 ), the Key R & D Plan Program of Shaanxi Province, China (Grant No. 2022SF-333), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2022JZ-05), the Natural Science Foundation Youth Program of Shaanxi Province, China (Grant No. 2022JQ-041), the Education Department Service Local Special Program of Shaanxi Province, China (Grant No. 22JC057), and the Innovation Fund Project of Xi’an University of Posts and Telecommunications, China (Grant No. CXJJY2022033).
    [1]

    Alkahtani M, Alsofyani N, Alfahd A, Almuqhim A A, Almuqhim F A, Alshehri A A, Qasem H, Hemmer P R 2021 Nanomaterials 11 284Google Scholar

    [2]

    Sun T Y, Li Y H, Ho W L, Zhu Q, Chen X, Jin L M, Zhu H M, Huang B L, Lin J, Little B E, Chu S T, Wang F 2019 Nat. Commun. 10 1811Google Scholar

    [3]

    Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G 2011 Nat. Mater. 10 968Google Scholar

    [4]

    Wang Y B, Lei L, Ye R G, Jia G H, Hua Y J, Deng D G, Xu S Q 2021 ACS Appl. Mater. Interfaces 13 23951Google Scholar

    [5]

    Bao H Q, Wang W, Li X, Liu X M, Zhang L, Yan X, Wang Y H, Wang C G, Jia X T, Sun P, Kong X G, Zhnag H, Lu G Y 2022 Adv. Optical Mater. 10 2101702Google Scholar

    [6]

    严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟 2019 物理学报 68 174204Google Scholar

    Yan X W, Wang C J, Wang B Y, Sun Z Y, Zhang C X, Han Q Y, Qi J X, Dong J, Gao W 2019 Acta Phys. Sin. 68 174204Google Scholar

    [7]

    Meng Z P, Zhang S F, Wu S L 2020 J. Lumin. 227 117566Google Scholar

    [8]

    Tang M, Zhu X H, Zhang Y H, Zhang Z P, Zhang Z M, Mei Q S, Zhang J, Wu M H, Liu J L, Zhang Y 2019 ACS Nano 13 10405Google Scholar

    [9]

    Wang W, Feng Z, Li B, Chang Y L, Li X, Yan X, Chen R Z, Yu X M, Zhao H Y, Lu G Y, Kong X G, Qian J, Liu X M 2021 J. Mater. Chem. B 9 2899Google Scholar

    [10]

    Xu F, Sun Y, Gao H P, Jin S Y, Zhang Z L, Zhang H F, Pan G C, Kang M, Ma X Q, Mao Y L 2021 ACS Appl. Mater. Interfaces 13 2674Google Scholar

    [11]

    Tan M L, Li F, Wang X, Fan R W, Chen G Y 2020 ACS Nano 14 6532Google Scholar

    [12]

    Zhang H B, Chen Z H, He Y R, Yang S Y, Wei J 2021 ACS Appl. Mater. Interfaces 4 4340

    [13]

    Lin H, Xu D K, Li A M, Teng D D, Yang S H, Zhang Y L 2016 Sci. Rep. 6 28051Google Scholar

    [14]

    Lin H, Xu D K, Li A M, Qiu Z R, Yang S H, Zhang Y L 2017 New J. Chem. 41 1193Google Scholar

    [15]

    Seki K, Uematsu K, Toda K, Sato M 2014 Chem. Lett. 43 1213Google Scholar

    [16]

    Lin H, Xu D K, Li Y J, Yao L, Xu L Q, Ma Y, Yang S H, Zhang Y L 2018 Inorg. Chem. 57 15361Google Scholar

    [17]

    Joshi R, Perala R S, Shelar S B, Ballal A, Singh B P, Ningthoujam S 2021 ACS Appl. Mater. Interfaces 13 3481Google Scholar

    [18]

    Cheng Q, Sui J H, Cai W 2012 Nanoscale 4 779Google Scholar

    [19]

    Lin H, Cheng Z Y, Xu D K, Zhang X G, Ge J, Xu L Q, Ma Y, Yang S H, Zhang Y L 2021 J. Mater. Chem. C 9 4385Google Scholar

    [20]

    Lin H, Xu D K, Cheng Z Y, Li Y G, Xu L Q, Ma Y, Yang S H, Zhang Y L 2020 Appl. Surf. Sci. 514 146074Google Scholar

    [21]

    Ren P, Zheng X L, Zhang J, Camillis S D, Jia J G, Wang H, Liao X Z, Piper J A, Lu Y Q 2022 ACS Photonics 9 758

    [22]

    Fu X, Fu S, Lu Q, Zhang J, Wan P P, Liu J L, Zhang Y, Chen C, Li W, Wang H D, Mei Q S 2022 Nat. Commun. 13 4741Google Scholar

    [23]

    Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B 179 107504Google Scholar

    [24]

    Jia H, Li D G, Zhang D, Dong Y H, Ma S T, Zhou M, Di W H, Qin W P 2021 ACS Appl. Mater. Interfaces 13 4402Google Scholar

    [25]

    Shang Y F, Hao S W, Lv W Q, Chen T, Tian L, Lei Z T, Yang C H 2018 J. Mater. Chem. C 6 3869Google Scholar

    [26]

    Choi J E, Kim D, Jang H S 2019 Chem. Commun. 55 2261Google Scholar

    [27]

    Huang J S, Yan L, Liu S B, Song N, Zhang Q Y, Zhou B 2021 Adv. Funct. Mater. 31 2009796Google Scholar

    [28]

    Xie X Y, Li Q Q, Chen H R, Wang W, Wu F X, Tu L P, Zhang Y L, Kong X G, Chang Y L 2022 Nano Lett. 22 5339Google Scholar

    [29]

    Li D, Wen S H, Kong M Y, Liu Y T, Hu W, Shi B Y, Shi X Y, Jin D Y 2020 Anal. Chem. 92 10913Google Scholar

    [30]

    Szczeszak A, Jurga N, Lis S 2020 Ceram. Int. 46 26382Google Scholar

    [31]

    Tong L M, Lu E, Pichaandi J, Zhao G Y, Winnik M A 2016 J. Phys. Chem. C 120 6269Google Scholar

    [32]

    Chen Q S, Xie X J, Huang B L, Liang L L, Han S Y, Yi Z G, Wang Y, Li Y, Fan D Y, Huang L, Liu X G 2017 Angew. Chem. Int. Ed. 56 7605Google Scholar

    [33]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [34]

    Cui X S, Cheng Y, Lin H, Wu Q P, Xu J, Wang Y S 2019 J. Rare Earths 37 573Google Scholar

    [35]

    Qiao Y F, Qiao S Q, Yu X, Min Q H, Pi C J, Qiu J B, Ma H Q, Yi J H, Zhan Q Q, Xu X H 2021 Nanoscale 13 8181Google Scholar

    [36]

    Gao W, Xing Y, Chen B H, Shao L, Zhang J J, Yan X W, Han Q Y, Zhang C Y, Liu L, Dong J 2023 J. Alloys Compd. 936 168371Google Scholar

    [37]

    Wu Q X, Xu Z, Wageh S, Al-Ghamdi A, Zhao S L 2021 J. Alloys Compd. 891 162067

    [38]

    Yan L, Huang J S, An Z C, Zhang Q Y, Zhou B 2022 Nano Lett. 22 7042Google Scholar

    [39]

    Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar

    [40]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar

    [41]

    董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟 2021 物理学报 70 154208Google Scholar

    Dong J, Zhang C X, Cheng X T, Xing Y, Han Q Y, Yan X W, Qi J X, Liu J H, Yang Y, Gao W 2021 Acta Phys. Sin. 70 154208Google Scholar

  • 图 1  NaErF4@NaYbF4及其包覆不同核壳结构的XRD图谱

    Figure 1.  The XRD patterns of NaErF4@NaYbF4 and different C-S structures.

    图 2  NaErF4@NaYbF4及其包覆不同核壳结构的TEM和粒径分布

    Figure 2.  The TEM images and size distribution of NaErF4@NaYbF4 and different C-S structures.

    图 3  在980 nm激发下, NaErF4@NaYbF4及其包覆不同核壳结构的(a)上转换发射光谱, (b)红绿比和(c)红、绿发射光积分强度

    Figure 3.  (a) The UC emission spectra, (b) R/G ratio (c) red and green emission integration intensity of NaErF4@NaYbF4 and their coating with different C-S structures under 980 nm excitation.

    图 4  在980 nm不同激发功率下 (a)NaErF4:0.5%Tm3+@NaYbF4:2%Er3+@NaYF4 C-S晶体的上转换发射光谱; (b)红、绿光发射与泵浦功率依赖关系; (c)红、绿光发射强度对比(插图为其对应的红绿比)

    Figure 4.  (a) The UC emission spectra , (b) power density dependence of red and green emission, and (c) comparison of red and green emission intensity of NaErF4:0.5%Tm3+@NaYbF4:2%Er3+ @ NaYF4 C-S structure under different excitation powers of 980 nm (The insert is corresponding R/G ratio).

    图 5  在980 nm激光激发下, NaErF4@NaYbF4及其包覆的不同核壳结构所对应的能级图及可能的跃迁机理图

    Figure 5.  The corresponding energy level diagrams and possible transition mechanism diagrams of NaErF4@ NaYbF4 and their coating with different C-S structures under 980 nm excitation.

    图 6  在980 nm脉冲激光激发下, NaErF4@NaYbF4及其包覆不同核壳结构的寿命衰减曲线图

    Figure 6.  The decay curves of NaErF4@NaYbF4 and their coating with different C-S structures under the excitation of a 980 nm pulse laser.

  • [1]

    Alkahtani M, Alsofyani N, Alfahd A, Almuqhim A A, Almuqhim F A, Alshehri A A, Qasem H, Hemmer P R 2021 Nanomaterials 11 284Google Scholar

    [2]

    Sun T Y, Li Y H, Ho W L, Zhu Q, Chen X, Jin L M, Zhu H M, Huang B L, Lin J, Little B E, Chu S T, Wang F 2019 Nat. Commun. 10 1811Google Scholar

    [3]

    Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G 2011 Nat. Mater. 10 968Google Scholar

    [4]

    Wang Y B, Lei L, Ye R G, Jia G H, Hua Y J, Deng D G, Xu S Q 2021 ACS Appl. Mater. Interfaces 13 23951Google Scholar

    [5]

    Bao H Q, Wang W, Li X, Liu X M, Zhang L, Yan X, Wang Y H, Wang C G, Jia X T, Sun P, Kong X G, Zhnag H, Lu G Y 2022 Adv. Optical Mater. 10 2101702Google Scholar

    [6]

    严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟 2019 物理学报 68 174204Google Scholar

    Yan X W, Wang C J, Wang B Y, Sun Z Y, Zhang C X, Han Q Y, Qi J X, Dong J, Gao W 2019 Acta Phys. Sin. 68 174204Google Scholar

    [7]

    Meng Z P, Zhang S F, Wu S L 2020 J. Lumin. 227 117566Google Scholar

    [8]

    Tang M, Zhu X H, Zhang Y H, Zhang Z P, Zhang Z M, Mei Q S, Zhang J, Wu M H, Liu J L, Zhang Y 2019 ACS Nano 13 10405Google Scholar

    [9]

    Wang W, Feng Z, Li B, Chang Y L, Li X, Yan X, Chen R Z, Yu X M, Zhao H Y, Lu G Y, Kong X G, Qian J, Liu X M 2021 J. Mater. Chem. B 9 2899Google Scholar

    [10]

    Xu F, Sun Y, Gao H P, Jin S Y, Zhang Z L, Zhang H F, Pan G C, Kang M, Ma X Q, Mao Y L 2021 ACS Appl. Mater. Interfaces 13 2674Google Scholar

    [11]

    Tan M L, Li F, Wang X, Fan R W, Chen G Y 2020 ACS Nano 14 6532Google Scholar

    [12]

    Zhang H B, Chen Z H, He Y R, Yang S Y, Wei J 2021 ACS Appl. Mater. Interfaces 4 4340

    [13]

    Lin H, Xu D K, Li A M, Teng D D, Yang S H, Zhang Y L 2016 Sci. Rep. 6 28051Google Scholar

    [14]

    Lin H, Xu D K, Li A M, Qiu Z R, Yang S H, Zhang Y L 2017 New J. Chem. 41 1193Google Scholar

    [15]

    Seki K, Uematsu K, Toda K, Sato M 2014 Chem. Lett. 43 1213Google Scholar

    [16]

    Lin H, Xu D K, Li Y J, Yao L, Xu L Q, Ma Y, Yang S H, Zhang Y L 2018 Inorg. Chem. 57 15361Google Scholar

    [17]

    Joshi R, Perala R S, Shelar S B, Ballal A, Singh B P, Ningthoujam S 2021 ACS Appl. Mater. Interfaces 13 3481Google Scholar

    [18]

    Cheng Q, Sui J H, Cai W 2012 Nanoscale 4 779Google Scholar

    [19]

    Lin H, Cheng Z Y, Xu D K, Zhang X G, Ge J, Xu L Q, Ma Y, Yang S H, Zhang Y L 2021 J. Mater. Chem. C 9 4385Google Scholar

    [20]

    Lin H, Xu D K, Cheng Z Y, Li Y G, Xu L Q, Ma Y, Yang S H, Zhang Y L 2020 Appl. Surf. Sci. 514 146074Google Scholar

    [21]

    Ren P, Zheng X L, Zhang J, Camillis S D, Jia J G, Wang H, Liao X Z, Piper J A, Lu Y Q 2022 ACS Photonics 9 758

    [22]

    Fu X, Fu S, Lu Q, Zhang J, Wan P P, Liu J L, Zhang Y, Chen C, Li W, Wang H D, Mei Q S 2022 Nat. Commun. 13 4741Google Scholar

    [23]

    Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B 179 107504Google Scholar

    [24]

    Jia H, Li D G, Zhang D, Dong Y H, Ma S T, Zhou M, Di W H, Qin W P 2021 ACS Appl. Mater. Interfaces 13 4402Google Scholar

    [25]

    Shang Y F, Hao S W, Lv W Q, Chen T, Tian L, Lei Z T, Yang C H 2018 J. Mater. Chem. C 6 3869Google Scholar

    [26]

    Choi J E, Kim D, Jang H S 2019 Chem. Commun. 55 2261Google Scholar

    [27]

    Huang J S, Yan L, Liu S B, Song N, Zhang Q Y, Zhou B 2021 Adv. Funct. Mater. 31 2009796Google Scholar

    [28]

    Xie X Y, Li Q Q, Chen H R, Wang W, Wu F X, Tu L P, Zhang Y L, Kong X G, Chang Y L 2022 Nano Lett. 22 5339Google Scholar

    [29]

    Li D, Wen S H, Kong M Y, Liu Y T, Hu W, Shi B Y, Shi X Y, Jin D Y 2020 Anal. Chem. 92 10913Google Scholar

    [30]

    Szczeszak A, Jurga N, Lis S 2020 Ceram. Int. 46 26382Google Scholar

    [31]

    Tong L M, Lu E, Pichaandi J, Zhao G Y, Winnik M A 2016 J. Phys. Chem. C 120 6269Google Scholar

    [32]

    Chen Q S, Xie X J, Huang B L, Liang L L, Han S Y, Yi Z G, Wang Y, Li Y, Fan D Y, Huang L, Liu X G 2017 Angew. Chem. Int. Ed. 56 7605Google Scholar

    [33]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [34]

    Cui X S, Cheng Y, Lin H, Wu Q P, Xu J, Wang Y S 2019 J. Rare Earths 37 573Google Scholar

    [35]

    Qiao Y F, Qiao S Q, Yu X, Min Q H, Pi C J, Qiu J B, Ma H Q, Yi J H, Zhan Q Q, Xu X H 2021 Nanoscale 13 8181Google Scholar

    [36]

    Gao W, Xing Y, Chen B H, Shao L, Zhang J J, Yan X W, Han Q Y, Zhang C Y, Liu L, Dong J 2023 J. Alloys Compd. 936 168371Google Scholar

    [37]

    Wu Q X, Xu Z, Wageh S, Al-Ghamdi A, Zhao S L 2021 J. Alloys Compd. 891 162067

    [38]

    Yan L, Huang J S, An Z C, Zhang Q Y, Zhou B 2022 Nano Lett. 22 7042Google Scholar

    [39]

    Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar

    [40]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar

    [41]

    董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟 2021 物理学报 70 154208Google Scholar

    Dong J, Zhang C X, Cheng X T, Xing Y, Han Q Y, Yan X W, Qi J X, Liu J H, Yang Y, Gao W 2021 Acta Phys. Sin. 70 154208Google Scholar

  • [1] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [3] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [4] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [5] Dong Jun, Zhang Chen-Xue, Cheng Xiao-Tong, Xing Yu, Han Qing-Yan, Yan Xue-Wen, Qi Jian-Xia, Liu Ji-Hong, Yang Yi, Gao Wei. Enhancing red upconversion emission of Ho3+ ions through constructing NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+ core-shell structures. Acta Physica Sinica, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [6] Gao Wei, Wang Bo-Yang, Sun Ze-Yu, Gao Lu, Zhang Chen-Xue, Han Qing-Yan, Dong Jun. Tuning upconversion emissions of Ho3+ through changing excitation conditions. Acta Physica Sinica, 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [7] Zhang Jia-Chen, Yu Wei-Xing, Xiao Fa-Jun, Zhao Jian-Lin. Tuning optical force of dielectric/metal core-shell placed above Au film. Acta Physica Sinica, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [8] Liu Bei, Lu Xi-Jian, Liu Xiao-Ning, Wu Yi-Pin, Zou Bin. Hot injection synthesis of core-shell upconversion nanoparticles for bioimaging application. Acta Physica Sinica, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [9] Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei. Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure. Acta Physica Sinica, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [10] Gao Wei, Dong Jun. Tuning upconversion fluorescence emission of -NaLuF4:Yb3+/Ho3+ nanocrystals through codoping Ce3+ ions. Acta Physica Sinica, 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [11] Lin Ying-Ying, Li Kui-Ying, Shan Qing-Song, Yin Hua, Zhu Rui-Ping. Photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe quantum dots with a core-shell structure. Acta Physica Sinica, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [12] Mao Xin-Guang, Wang Jun, Shen Jie. Upconversion luminescence properties in Er3+/Yb3+ codoped TiO2 films prepared by magnetron sputtering. Acta Physica Sinica, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [13] Zou Xiao-Cui, Wu Mu-Sheng, Liu Gang, Ouyang Chu-Ying, Xu Bo. First-principles study on the electronic structures of β-SiC/carbon nanotube core-shell structures. Acta Physica Sinica, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [14] Shu Ming-Fei, Shang Yu-Li, Chen Wei, Cao Wan-Qiang. Influence of core-shell structure on dielectric behaviour in relaxor ferroelectrics. Acta Physica Sinica, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [15] Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua. Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation. Acta Physica Sinica, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [16] Yuan Ning-Yi, Chen Xiao-Shuang, Ding Jian-Ning, He Ze-Jun, Li Feng, Lu Wei. Quantum effect and up-conversion luminescence of ZnO-SiO2 composite films synthesized by sol-gel technique. Acta Physica Sinica, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [17] Jin Zhe, Nie Qiu-Hua, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang, Zhang Xiang-Hua. Energy transfer and upconversion luminescence of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite glasses. Acta Physica Sinica, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [18] Wen Lei, Zhang Li-Yan, Yang Jian-Hu, Wang Guo-Nian, Chen Wei, Hu Li- Li. Upconversion emission properties of Er3+ in fluoride (halide) phosphate tellurite glasses. Acta Physica Sinica, 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [19] Chen Xiao-Bo, Liu Kai, Zhang Jian, Wang Guo-Wen, Chen Chang-Tian. . Acta Physica Sinica, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] Zhao Li-Juan, Sun Ling-Dong, Xu Jing-Jun, Zhang Guang-Yin. . Acta Physica Sinica, 2001, 50(1): 63-67. doi: 10.7498/aps.50.63
Metrics
  • Abstract views:  2306
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2023
  • Accepted Date:  18 June 2023
  • Available Online:  07 July 2023
  • Published Online:  05 September 2023

/

返回文章
返回