Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physical design and primary experimental results of imaging neutral particle analyzer on HL-2A tokamak

Yan Xiao-Yu He Xiao-Fei Yu Li-Ming Liu Liang Chen Wei Shi Zhong-Bing Lu Jie Wei Hui-Ling Han Ji-Feng Zhang Yi-Po Zhong Wu-Lü Xu Min

Citation:

Physical design and primary experimental results of imaging neutral particle analyzer on HL-2A tokamak

Yan Xiao-Yu, He Xiao-Fei, Yu Li-Ming, Liu Liang, Chen Wei, Shi Zhong-Bing, Lu Jie, Wei Hui-Ling, Han Ji-Feng, Zhang Yi-Po, Zhong Wu-Lü, Xu Min
PDF
HTML
Get Citation
  • The imaging neutral particle analyzer (INPA) based on scintillator (ZnS(Ag)) is designed and used on HL-2A tokamak to investigate the distribution of energetic particles (EPs) and even their interactions with magnetohydrodynamic instabilities. The collimation system is composed of a pinhole of 3 mm in diameter and six circular carbon microcrystal diaphragms each with a thickness of 10 nm. The neutral particles escape from six definite positions in the neutral beam injection path and pass through the collimator system at a certain pitch angle, and the neutral particles become fast ions after passing through the carbon microcrystal diaphragm. The fast ions will hit the scintillator after a 180° deflection by the edge magnetic field. The energy, pitch angle and birthplace can be calculated by the position and light intensity of the impact spots. The images of impact spots caused by long-lived mode are recorded by a high-speed camera through the fiber optic bundle. The long-lived mode instabilities approve to be excited by the core EPs with energy value in a range of $E\sim $12.5-32 keV, pitch angle of $v_{//}/v\sim$0.86, and the birthplace in a range of $R\sim $170.5-171.5 cm.
      Corresponding author: Yu Li-Ming, yulm@swip.ac.cn
    • Funds: Project supported by the the National Key R&D Program of China (Grant Nos. 2019YFE03020000, 2018YFE0304100), the Science and Technology Program of Sichuan Province, China (Grant Nos. 2022NSFSC1823, 2022ZYD0019), and the Innovation Program of SWIP, China (Grant No. 202103XWCXRC003).
    [1]

    Heidbrink W W 2002 Phys. Plasmas 9 2113Google Scholar

    [2]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [3]

    Ding X T, Chen W 2018 Plasma Sci. Technol. 20 094008Google Scholar

    [4]

    Shi P W, Chen W, Duan X R 2021 Chin. Phys. Lett 38 035202Google Scholar

    [5]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [6]

    Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V 2007 Nucl. Fusion 47 S264Google Scholar

    [7]

    Afanasyev V I, Chernyshev F V, Kozlovsky S S, et al. 2022 JINST 17 C07001Google Scholar

    [8]

    Kocan M, Garcia-Munoz M, Ayllon-Guerola J, et al. 2017 JINST 12 C12027Google Scholar

    [9]

    Zhang J, Huang J, Chang J F, Wu C R, Heidbrink W W, Salewski M, Madsen B, Zhu Y B, von Hellermann M G, Gao W, Xu Z, Wan B 2018 Rev. Sci. Instrum. 89 10D121Google Scholar

    [10]

    Saquilayan G M Q, Wada M 2018 Jpn. J. Appl. Phys. 57 01AA01Google Scholar

    [11]

    商洁, 黄渊, 杨凯, 陈宝维, 刘春华, 杨屹 2021 光谱学与光谱分析 41 333

    Shang J, Huang Y, Yang K, Chen B W, Liu C H, Yang Y 2021 Spectroscopy and Spectral Analysis 41 333

    [12]

    Berezovsky E L, Efremov S L, Izvozchikov A B, Petrov, M P, Petrov S Y 1981 10th European Conference on Controlled Fusion and Plasma Physics Moscow, Russian Republic, September 14–19, 1981 p67

    [13]

    Medlley S S, Donne A J H, Kaita R, Kislyakov A I, Petrov M P, Roquemore A L 2008 Rev. Sci. Instrum. 79 011101Google Scholar

    [14]

    Medlley S S, Bell R E, Petrov M P, Roquemore A L, Suvorkin E V 2003 Rev. Sci. Instrum. 74 1896Google Scholar

    [15]

    Bracco G, Betello G, Mantovani S, Moleti A, Tilia B, Zanza V 1992 Rev.Sci.Instrum. 63 5685Google Scholar

    [16]

    Karpushov A N, Duval B P, Schlatter C 2006 Rev. Sci. Instrum. 77 033504Google Scholar

    [17]

    Chernyshev F V, Afanasyev V I, Dech A V, Kick M, Kislyakov A I, Kozlovskii S S, Kreter A, Mironov M I, Petrov M P, Petrov S Y 2004 Instr. Exp. Tech. 47 214Google Scholar

    [18]

    Zhu Y B, Bortolon A, Heidbrink W W, Celle S L, Roquemore A L 2012 Rev. Sci. Instrum. 83 10D304Google Scholar

    [19]

    Afanasiev V I, Gondhalekar A, Babenko P Y, et al. 2003 Rev. Sci. Instrum. 74 2338Google Scholar

    [20]

    Stott P E, Gorini G, Prandoni P, Sindoni E 2012 Diagnostics for Experimental Thermonuclear Fusion Reactors 2 (New York: Springer

    [21]

    Xia Z W, Li W, Yang Q W, Lu J, Yi P, Gao J M 2013 Plasma Sci. Technol. 15 101Google Scholar

    [22]

    Du X D, Van Zeeland M A, Heidbrink W W, Su D 2018 Nucl. Fusion 58 082006Google Scholar

    [23]

    Van Zeeland M A, Du X D, Heidbrink W W, Stagner L, Su D 2019 JINST 14 C09027Google Scholar

    [24]

    Rueda-Rueda J, Garcia-Munoz M, Viezzer E, Schneider P A, Garcia-Dominguez J, Ayllon-Guerola J, Galdon-Quiroga J, Herrmann A, Du X D, Van Zeeland M A, Oyola P, Rodriguez-Ramos M, ASDEX Upgrade team 2021 Rev. Sci. Instrum. 92 043554Google Scholar

    [25]

    刘洋, 徐明, 蔡辉山, 等 2023 第八届等离子体诊断会议 中国珠海, 2023年5月25−27日

    Liu Y, Xu M, Cai H S, et al. 2023 The 8th Conference on Fusion Plasma Diagnostics Zhuhai China, March 25−27, 2023

    [26]

    颜筱宇, 何小斐, 于利明, 等 2023 第八届等离子体诊断会议 中国珠海, 2023年5月25—27日

    Yan X Y, He X F, Yu L M, et al. 2023 The 8th Conference on Fusion Plasma Diagnostics Zhu Hai, China, March 25−27, 2023

    [27]

    Zhang R B, Wang X Q, Xiao C J, Wang X G, Liu Y, Deng W, Chen W, Ding X T, Duan X R, HL-2A Team 2014 Plasma Phys. Controlled Fusion 56 095007Google Scholar

    [28]

    Wang X Q, Zhang R B, Qin L, Wang X G 2014 Plasma Phys. Controlled Fusion 56 095013Google Scholar

    [29]

    Peeters A 1994 Ph. D. Dissertation (Eindhoven: Technische Universiteit Eindhoven

  • 图 1  HL-2A装置INPA诊断系统的主要结构及快离子的测量轨迹示意图

    Figure 1.  Structure of the INPA and flight trajectories of FIs on HL-2A.

    图 2  HL-2A装置上2# NBI的注入路径和INPA诊断系统中6个测量通道所对应的观测位置

    Figure 2.  Injection path of 2# NBI system and the observed positions for 6 channels of INPA on HL-2A.

    图 3  在HL-2A装置极向截面显示的INPA系统观测到的粒子位置和螺距角

    Figure 3.  Positions and pitch angles of the observed particles from INPA system in the poloidal cross section in HL-2A.

    图 4  HL-2A装置上INPA诊断系统主要部件的实物及内部布置图 (a) INPA的外观图; (b)内部剥离膜片和闪烁体的布局图; (c)碳微晶体膜片尺寸和结构

    Figure 4.  External figure and arrangement inside the chamber of INPA diagnostics on HL-2A: (a) External figure; (b) arrangement of carbon microcrystal diaphragm and scintillator inside the chamber: (c) detail structure of carbon microcrystal diaphragm

    图 5  INPA诊断系统中几何机构引起的误差分析 (a)粒子束在磁场中的偏转及在闪烁体上的轰击斑; (b) INPA诊断系统6个测量通道的粒子在闪烁体上的落点; (c)粒子在闪烁体上的落点位置和入射能量的关系; (d)能量分辨率与粒子能量的关系

    Figure 5.  Analysis of errors caused by geometric mechanisms of diagnostic systems: (a) Flight orbits and impact spots of the measured particles on scintillator; (b) positions of impact spots from the particles from 6 channels in INPA; (c) relationship between the position of the particle’s landing point on the scintillator and the incident energy; (d) relationship between energy of particles and energy resolution

    图 6  HL-2A装置上INPA诊断系统的安装 (a) INPA诊断系统在真空室内的安装位置; (b) INPA诊断系统在真空室外的高速相机、光纤束和法兰等

    Figure 6.  Installation of INPA system on HL-2A: (a) Installation of the INPA on the flange inside the vacuum chamber; (b) arrangement of the fast speed camera, light fiber bundle and flange

    图 7  HL-2A装置上第38140次放电的实验参数及观测到的LLM不稳定性 (a) 等离子体主要放电参数, 即$I_{\rm{p}}$、等离子体平均密度$n_{\rm{e}}$$B_{\rm{t}}$; (b) $1^\#$$2^\#$NBI束线的加热功率和时序; (c)氘$\alpha$(${{D}}_\alpha$)辐射信号; (d) Mirnov磁探针信号及(e)频率谱图

    Figure 7.  Discharge parameters and the observed LLM instabilities in shot 38140 on HL-2A: (a) Main discharge parameters, $I_{\rm{p}}$, line-averaged electron density $n_{\rm{e}}$ and $B_{\rm{t}}$; (b) heating power of $1^\#$ and $2^\#$ NBI systems and evolution; (c) ${{D}}_\alpha$ signal; (d) Mirnov signal and (e) its spectrogram

    图 8  NBI期间的LLM引起的粒子轰击图像 (a)—(l) LLM在H模和L模运行期间的不同时刻在INPA闪烁体上观测到的粒子轰击图像及演化

    Figure 8.  Impact spots caused by LLM instabilities on scintillator screen: (a)–(l) impact light spots of measured particles caused by LLM on scintillator screen in different time during H- and L-mode operation scenarios

    图 9  通过闪烁屏上的轰击斑位置得到的快离子能量和位置

    Figure 9.  Energy and birthplace of FIs based on the impact light spot on scintillator screen

    图 10  通过具有空间分辨率的远红外密度干涉仪的密度扰动确定LLM的局域位置

    Figure 10.  Locations of LLM confirmed by the fluctuations in electron-density by far-infrared laser interferometer with a rough spatial resolution.

    图 11  (a) 1356 ms前后等离子体转动频率随大半径的变化; (b)大半径在170 cm附近, 等离子体转动频率随时间的变化

    Figure 11.  (a) Variations of plasma rotation frequency with R around 1356 ms; (b) variations of plasma rotation frequency with time for R around 170 cm

    表 1  INPA诊断系统的6个测量通道所观测粒子的位置和粒子特征信息

    Table 1.  Observed positions and characteristic information of particles from the 6 channels of the INPA system

    测量通道(No.) 1 2 3 4 5 6
    R/cm 172.6 170.6 170.9 175.8 180.5 211.8
    Z/cm –10.5 –10.5 –10.5 –10.5 –10.5 –10.5
    $\theta$/(°) 90.0 121.9 149.2 170.9 172.0 158.4
    $v_{/ /}/v$ 0 0.53 0.86 0.98 0.99 0.93
    DownLoad: CSV

    表 2  INPA诊断系统的6个通道对应的测量范围

    Table 2.  Measurement ranges corresponding to the 6 channels of the INPA diagnostic system

    测量通道(No.) 1 2 3 4 5 6
    $ R_{{\rm{min}}} $/cm 172.1 170.4 170.6 174.3 185.5 201.5
    $R_{{\rm{max}}}$/cm 173.2 170.9 171.5 177.8 194.1 219.1
    $\phi$/(°) 1.25 1.00 0.59 0.33 0.19 0.11
    DownLoad: CSV

    表 3  通行快离子的理论计算频率值与实验观测LLM不稳定性频率对比

    Table 3.  Comparisons between the calculated frequency of EIs and $f_{{\rm{LLM}}}$

    E/keV $f_{\rm{p}}$/kHz $f_{\rm{t}}$/kHz $f_{{\rm{Lab}}} = f_{\rm{p}}+f_{{\rm{t}}}$/kHz $f_{{\rm{LLM}}}$/kHz
    12.5 2.4 8.1 2.4 + 8.1 = 10.5 13.4
    32 6.2 8.1 6.2 + 8.1 = 14.3 13.4
    DownLoad: CSV
  • [1]

    Heidbrink W W 2002 Phys. Plasmas 9 2113Google Scholar

    [2]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [3]

    Ding X T, Chen W 2018 Plasma Sci. Technol. 20 094008Google Scholar

    [4]

    Shi P W, Chen W, Duan X R 2021 Chin. Phys. Lett 38 035202Google Scholar

    [5]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [6]

    Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V 2007 Nucl. Fusion 47 S264Google Scholar

    [7]

    Afanasyev V I, Chernyshev F V, Kozlovsky S S, et al. 2022 JINST 17 C07001Google Scholar

    [8]

    Kocan M, Garcia-Munoz M, Ayllon-Guerola J, et al. 2017 JINST 12 C12027Google Scholar

    [9]

    Zhang J, Huang J, Chang J F, Wu C R, Heidbrink W W, Salewski M, Madsen B, Zhu Y B, von Hellermann M G, Gao W, Xu Z, Wan B 2018 Rev. Sci. Instrum. 89 10D121Google Scholar

    [10]

    Saquilayan G M Q, Wada M 2018 Jpn. J. Appl. Phys. 57 01AA01Google Scholar

    [11]

    商洁, 黄渊, 杨凯, 陈宝维, 刘春华, 杨屹 2021 光谱学与光谱分析 41 333

    Shang J, Huang Y, Yang K, Chen B W, Liu C H, Yang Y 2021 Spectroscopy and Spectral Analysis 41 333

    [12]

    Berezovsky E L, Efremov S L, Izvozchikov A B, Petrov, M P, Petrov S Y 1981 10th European Conference on Controlled Fusion and Plasma Physics Moscow, Russian Republic, September 14–19, 1981 p67

    [13]

    Medlley S S, Donne A J H, Kaita R, Kislyakov A I, Petrov M P, Roquemore A L 2008 Rev. Sci. Instrum. 79 011101Google Scholar

    [14]

    Medlley S S, Bell R E, Petrov M P, Roquemore A L, Suvorkin E V 2003 Rev. Sci. Instrum. 74 1896Google Scholar

    [15]

    Bracco G, Betello G, Mantovani S, Moleti A, Tilia B, Zanza V 1992 Rev.Sci.Instrum. 63 5685Google Scholar

    [16]

    Karpushov A N, Duval B P, Schlatter C 2006 Rev. Sci. Instrum. 77 033504Google Scholar

    [17]

    Chernyshev F V, Afanasyev V I, Dech A V, Kick M, Kislyakov A I, Kozlovskii S S, Kreter A, Mironov M I, Petrov M P, Petrov S Y 2004 Instr. Exp. Tech. 47 214Google Scholar

    [18]

    Zhu Y B, Bortolon A, Heidbrink W W, Celle S L, Roquemore A L 2012 Rev. Sci. Instrum. 83 10D304Google Scholar

    [19]

    Afanasiev V I, Gondhalekar A, Babenko P Y, et al. 2003 Rev. Sci. Instrum. 74 2338Google Scholar

    [20]

    Stott P E, Gorini G, Prandoni P, Sindoni E 2012 Diagnostics for Experimental Thermonuclear Fusion Reactors 2 (New York: Springer

    [21]

    Xia Z W, Li W, Yang Q W, Lu J, Yi P, Gao J M 2013 Plasma Sci. Technol. 15 101Google Scholar

    [22]

    Du X D, Van Zeeland M A, Heidbrink W W, Su D 2018 Nucl. Fusion 58 082006Google Scholar

    [23]

    Van Zeeland M A, Du X D, Heidbrink W W, Stagner L, Su D 2019 JINST 14 C09027Google Scholar

    [24]

    Rueda-Rueda J, Garcia-Munoz M, Viezzer E, Schneider P A, Garcia-Dominguez J, Ayllon-Guerola J, Galdon-Quiroga J, Herrmann A, Du X D, Van Zeeland M A, Oyola P, Rodriguez-Ramos M, ASDEX Upgrade team 2021 Rev. Sci. Instrum. 92 043554Google Scholar

    [25]

    刘洋, 徐明, 蔡辉山, 等 2023 第八届等离子体诊断会议 中国珠海, 2023年5月25−27日

    Liu Y, Xu M, Cai H S, et al. 2023 The 8th Conference on Fusion Plasma Diagnostics Zhuhai China, March 25−27, 2023

    [26]

    颜筱宇, 何小斐, 于利明, 等 2023 第八届等离子体诊断会议 中国珠海, 2023年5月25—27日

    Yan X Y, He X F, Yu L M, et al. 2023 The 8th Conference on Fusion Plasma Diagnostics Zhu Hai, China, March 25−27, 2023

    [27]

    Zhang R B, Wang X Q, Xiao C J, Wang X G, Liu Y, Deng W, Chen W, Ding X T, Duan X R, HL-2A Team 2014 Plasma Phys. Controlled Fusion 56 095007Google Scholar

    [28]

    Wang X Q, Zhang R B, Qin L, Wang X G 2014 Plasma Phys. Controlled Fusion 56 095013Google Scholar

    [29]

    Peeters A 1994 Ph. D. Dissertation (Eindhoven: Technische Universiteit Eindhoven

  • [1] Li Zheng-Ji, Chen Wei, Sun Ai-Ping, Yu Li-Ming, Wang Zhuo, Chen Jia-Le, Xu Jian-Qiang, Li Ji-Quan, Shi Zhong-Bing, Jiang Min, Li Yong-Gao, He Xiao-Xue, Yang Zeng-Chen, Li Jian. Integrated analysis of high-βN double transport barriers scenario on HL-2A. Acta Physica Sinica, 2024, 73(6): 065202. doi: 10.7498/aps.73.20231543
    [2] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [3] Hao Bao-Long, Li Ying-Ying, Chen Wei, Hao Guang-Zhou, Gu Xiang, Sun Tian-Tian, Wang Yu-Min, Dong Jia-Qi, Yuan Bao-Shan, Peng Yuan-Kai, Shi Yue-Jiang, Xie Hua-Sheng, Liu Min-Sheng, ENN TEAM. Optimizing numerical simulation of beam ion loss due to toroidal field ripple on EXL-50U spherical torus. Acta Physica Sinica, 2023, 72(21): 215215. doi: 10.7498/aps.72.20230749
    [4] Zheng Shu, Zhang Jia-Peng, Duan Ping, Wei Lai, Wang Xian-Qu. Numerical study of double tearing mode instability in viscous plasma. Acta Physica Sinica, 2013, 62(2): 025205. doi: 10.7498/aps.62.025205
    [5] Jian Guang-De, Dong Jia-Qi. Particle simulation method for the electron temperature gradient instability in toroidal plasmas. Acta Physica Sinica, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [6] DU JIA-LING. MORPHOLOGICAL INSTABILITY IN RAPID DIRECTIONAL SOLIDIFICATION. Acta Physica Sinica, 1999, 48(8): 1547-1551. doi: 10.7498/aps.48.1547
    [7] HUANG CHAO-SONG, LI JUN. MODE COUPLING OF INTERCHANGE INSTABILITY IN PLASMAS. Acta Physica Sinica, 1992, 41(5): 783-791. doi: 10.7498/aps.41.783
    [8] WANG DE-ZHEN, GUO SHI-CHONG, CAI SHI-DONG. HIGH BETA EFFECTS ON THE FLUTE LOWER HYBRID DRIFT INSTABILITY. Acta Physica Sinica, 1990, 39(6): 67-74. doi: 10.7498/aps.39.67-2
    [9] GUO SHI-CHONG, SHEN JIE-WU, CAI SHI-DONG. WARM ION EFFECTS ON KINETIC DRIFT CYCLOTRON LOSS CONE INSTABILITIES. Acta Physica Sinica, 1988, 37(12): 1993-2003. doi: 10.7498/aps.37.1993
    [10] HUANG CHAO-SONG, REN ZHAO-XING, QIU LI-JIAN. DISSIPATIVE DRIFT INSTABILITIES IN A HOT ELECTRON PLASMA. Acta Physica Sinica, 1987, 36(9): 1112-1121. doi: 10.7498/aps.36.1112
    [11] Xu Xue-qiao, Huo Yu-ping. MACROSCOPICAL BEAM-PLASMA KINK INSTABILITY RESEARCH IN TOKAMAK. Acta Physica Sinica, 1986, 35(10): 1259-1270. doi: 10.7498/aps.35.1259
    [12] GU YONG-NIAN. KINK INSTABILITIES OF A SHARP BOUNDARY PLASMA WITH SMALL ASPECT RATIO. Acta Physica Sinica, 1984, 33(4): 554-560. doi: 10.7498/aps.33.554
    [13] HE XIAN-SHI. THE MODULATION INSTABILITY AND THE COLLAPSE PROCESS OF WAVE PACKET IN PLASMA. Acta Physica Sinica, 1983, 32(5): 627-639. doi: 10.7498/aps.32.627
    [14] ZHOU YU-MEI, C. S. WU. ION-ION STREAMING INSTABILITY IN A HIGH BETA PLASMA. Acta Physica Sinica, 1983, 32(10): 1319-1322. doi: 10.7498/aps.32.1319
    [15] GUO SHI-CHONG, SHEN JIE-WU, CHEN LIU, CAI SHI-DONG. ANALYTICAL THEORY OF ION-TEMPERATURE-GRADIENT INSTABILITY. Acta Physica Sinica, 1982, 31(1): 17-29. doi: 10.7498/aps.31.17
    [16] LU QUAN-KANG. ON ELECTROMAGNETIC INSTABILITIES OF PLASMA (II). Acta Physica Sinica, 1981, 30(2): 266-270. doi: 10.7498/aps.30.266
    [17] WANG ZHONG-TIAN. INVESTIGATION OF MHD INSTABILITY OF NONCIRCULAR TOKAMAK PLASMA. Acta Physica Sinica, 1981, 30(5): 573-583. doi: 10.7498/aps.30.573
    [18] GU YONG-NIAN, QIU NAI-XIAN. KINK INSTABILITIES OF A PLASMA COLUMN WITH ELLIPTICAL CROSS-SECTION. Acta Physica Sinica, 1980, 29(11): 1367-1377. doi: 10.7498/aps.29.1367
    [19] ZHOU YU-MEI, CAI SHI-DONG. PARAMETRIC INSTABILITIES WITH WELL SEPARATED FREQUENCIES IN MAGNETIZED PLASMA. Acta Physica Sinica, 1980, 29(7): 916-926. doi: 10.7498/aps.29.916
    [20] . Acta Physica Sinica, 1965, 21(9): 1700-1704. doi: 10.7498/aps.21.1700
Metrics
  • Abstract views:  1143
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2023
  • Accepted Date:  25 July 2023
  • Available Online:  02 August 2023
  • Published Online:  05 November 2023

/

返回文章
返回