Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics of ferrimagnetic domain walls driven by sinusoidal microwave magnetic field

Zhao Chen-Rui Wei Yun-Xin Liu Ting-Ting Qin Ming-Hui

Citation:

Dynamics of ferrimagnetic domain walls driven by sinusoidal microwave magnetic field

Zhao Chen-Rui, Wei Yun-Xin, Liu Ting-Ting, Qin Ming-Hui
PDF
HTML
Get Citation
  • Ferrimagnetic domain walls have received more and more attention because of their interesting physics and potential applications in future spintronic devices, particularly attributing their non-zero net magnetization and ultrafast dynamics. Exploring effective methods of driving domain walls with low energy consumption and high efficiency can provide important information for experimental design and device development. In this work, we study theoretically and numerically the dynamics of ferrimagnetic domain wall driven by the sinusoidal microwave magnetic field using the collective coordinate theory and Landau-Lifshitz-Gilbert simulations of atomistic spin model. It is revealed that the microwave field drives the propagation of the domain wall when the frequency falls into an appropriate range, which allows one to modulate the domain wall dynamics through tuning field frequency. Specifically, below the critical frequency, the domain wall velocity is proportional to the field frequency and the net angular momentum, while above the critical frequency, the domain wall velocity decreases rapidly to zero . The physical mechanisms of the results are discussed in detail, and the influences of the biaxial anisotropy and other parameters on the velocity of domain wall are studied. It is suggested that the wall dynamics can be effectively regulated by adjusting the basic magnetic structure and magnetic anisotropy, in addition to the external microwave field frequency. This work uncovers the interesting dynamics of ferrimagnetic domain wall driven by sinusoidal microwave magnetic field, which is helpful for designing domain wall-based spintronic device.
      Corresponding author: Qin Ming-Hui, qinmh@scnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grants No. U22A20117, 52371243, 51971096), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2022A1515011727), and the Funding by Science and Technology Projects in Guangzhou, China (Grant No. 202201000008).
    [1]

    Žutić I, Fabian J, Sarma S Das 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    赵巍胜, 张博宇, 彭守仲 2022 自旋电子科学与技术 (北京: 人民邮电出版社) 第6页

    Zhao W S, Zhang B Y, Peng S Z 2022 Spintronic Science and Technology (Beijing: Posts and Telecommunications Press) p6

    [3]

    韩秀峰 2014 自旋电子学导论(上卷) (北京: 科学出版社) 第10页

    Han X F 2014 Introduction to Spintronics (Vol. 1) (Beijing: Science Press) p10

    [4]

    Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F, Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204Google Scholar

    [5]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [6]

    Yu W, Lan J, Xiao J 2018 Phys. Rev. B 98 144422Google Scholar

    [7]

    Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M 2020 Phys. Rev. Res. 2 013166Google Scholar

    [8]

    Jin Z, Liu T T, Li W H, Zhang X M, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2020 Phys. Rev. B 102 054419Google Scholar

    [9]

    Chen Z Y, Qin M H, Liu J M 2019 Phys. Rev. B 100 020402(RGoogle Scholar

    [10]

    Zhang Y L, Chen Z Y, Yan Z R, Chen D Y, Fan Z, Qin M H 2018 Appl. Phys. Lett. 113 112403Google Scholar

    [11]

    Selzer S, Atxitia U, Ritzmann U, Hinzke D, Nowak U 2016 Phys. Rev. Lett. 117 107201Google Scholar

    [12]

    Tveten E G, Qaiumzadeh A, Brataas A 2014 Phys. Rev. Lett. 112 147204Google Scholar

    [13]

    Jin Z, Meng C Y, Liu T T, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2021 Phys. Rev. B 104 054419Google Scholar

    [14]

    Zvezdin A K, Gareeva Z V, Zvezdin K A 2020 J. Magn. Magn. Mater. 509 166876Google Scholar

    [15]

    Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414Google Scholar

    [16]

    Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187Google Scholar

    [17]

    Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403Google Scholar

    [18]

    Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar

    [19]

    Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science. 370 1438Google Scholar

    [20]

    Sun C, Yang H, Jalil M B A 2020 Phys. Rev. B 102 134420Google Scholar

    [21]

    Yuan H Y, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [22]

    Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar

    [23]

    Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(RGoogle Scholar

    [24]

    Martínez E, Raposo V, Alejos Ó 2019 J. Magn. Magn. Mater. 491 165545Google Scholar

    [25]

    Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X, Tang W 2014 Phys. Rev. B 89 144418Google Scholar

    [26]

    Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M 2018 New J. Phys. 20 063003Google Scholar

    [27]

    Jin M, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431Google Scholar

    [28]

    Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Met. 41 3815Google Scholar

    [29]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmond K, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

  • 图 1  磁矩排列示意图 (a)铁磁; (b)亚铁磁; (c)反铁磁

    Figure 1.  Spin configurations: (a) Ferromagnetic; (b) ferrimagnetic; (c) antiferromagnetic states.

    图 2  一维亚铁磁纳米线畴壁结构以及外加正弦微波磁场示意图

    Figure 2.  Schematic depiction of a one-dimensional ferrimagnetic nanowire along the z direction with a domain wall under a sinusoidal microwave magnetic field.

    图 3  h0 = 0.11J, 理论计算(实线)和模拟(实心点)不同δs下的畴壁速度v(ω)

    Figure 3.  The calculated (solid lines) and simulated (solid points) v as a function of ω for various δs under h0 = 0.11J.

    图 4  不同频率下, 畴壁面角ϕ振荡, 红线表示微波场的相位 (a) ω = 0.035, δs = –0.0218和0.0218; (b) ω = 0.21, δs = –0.0218; (c) ω = 0.24, δs = –0.0218

    Figure 4.  The domain wall angle ϕ and phase position (red line) of microwave field as functions of time: (a) ω = 0.035, δs = –0.0218 and 0.0218; (b) ω = 0.21, δs = –0.0218; (c) ω = 0.24, δs = –0.0218.

    图 5  (a) Kx = 0.004J时不同Kz, (b) Kz = 0.010J时不同Kx下模拟的v(ω)曲线

    Figure 5.  The simulated v(ω) curves (a) for various Kz at Kx = 0.004J, and (b) for various Kx at Kz = 0.010J.

    表 1  模拟选择的参数, 参数4为角动量补偿点TA, 净自旋密度δs = 0

    Table 1.  Parameters chosen for the simulations, the fourth parameter set corresponds to the angular momentum compensation point TA with the net spin density δs = 0.

    参数 1 2 3 4 5 6 7
    M1 ( μs ) 1.13 1.12 1.11 1.10 1.09 1.08 1.07
    M2 ( μs ) 1.06 1.04 1.02 1.0 0.98 0.96 0.94
    δs ( μs/γ ) –0.03273 –0.0218 –0.0109 0 0.0109 0.0218 0.03273
    DownLoad: CSV
  • [1]

    Žutić I, Fabian J, Sarma S Das 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    赵巍胜, 张博宇, 彭守仲 2022 自旋电子科学与技术 (北京: 人民邮电出版社) 第6页

    Zhao W S, Zhang B Y, Peng S Z 2022 Spintronic Science and Technology (Beijing: Posts and Telecommunications Press) p6

    [3]

    韩秀峰 2014 自旋电子学导论(上卷) (北京: 科学出版社) 第10页

    Han X F 2014 Introduction to Spintronics (Vol. 1) (Beijing: Science Press) p10

    [4]

    Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F, Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204Google Scholar

    [5]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [6]

    Yu W, Lan J, Xiao J 2018 Phys. Rev. B 98 144422Google Scholar

    [7]

    Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M 2020 Phys. Rev. Res. 2 013166Google Scholar

    [8]

    Jin Z, Liu T T, Li W H, Zhang X M, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2020 Phys. Rev. B 102 054419Google Scholar

    [9]

    Chen Z Y, Qin M H, Liu J M 2019 Phys. Rev. B 100 020402(RGoogle Scholar

    [10]

    Zhang Y L, Chen Z Y, Yan Z R, Chen D Y, Fan Z, Qin M H 2018 Appl. Phys. Lett. 113 112403Google Scholar

    [11]

    Selzer S, Atxitia U, Ritzmann U, Hinzke D, Nowak U 2016 Phys. Rev. Lett. 117 107201Google Scholar

    [12]

    Tveten E G, Qaiumzadeh A, Brataas A 2014 Phys. Rev. Lett. 112 147204Google Scholar

    [13]

    Jin Z, Meng C Y, Liu T T, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2021 Phys. Rev. B 104 054419Google Scholar

    [14]

    Zvezdin A K, Gareeva Z V, Zvezdin K A 2020 J. Magn. Magn. Mater. 509 166876Google Scholar

    [15]

    Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414Google Scholar

    [16]

    Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187Google Scholar

    [17]

    Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403Google Scholar

    [18]

    Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar

    [19]

    Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science. 370 1438Google Scholar

    [20]

    Sun C, Yang H, Jalil M B A 2020 Phys. Rev. B 102 134420Google Scholar

    [21]

    Yuan H Y, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [22]

    Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar

    [23]

    Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(RGoogle Scholar

    [24]

    Martínez E, Raposo V, Alejos Ó 2019 J. Magn. Magn. Mater. 491 165545Google Scholar

    [25]

    Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X, Tang W 2014 Phys. Rev. B 89 144418Google Scholar

    [26]

    Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M 2018 New J. Phys. 20 063003Google Scholar

    [27]

    Jin M, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431Google Scholar

    [28]

    Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Met. 41 3815Google Scholar

    [29]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmond K, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

  • [1] Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng. Magnon Hall effect. Acta Physica Sinica, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [3] Liu Nan-Shu, Wang Cong, Ji Wei. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [4] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [5] Niu Peng-Bin, Luo Hong-Gang. Interplay between Majorana fermion and impurity in thermal-driven transport model. Acta Physica Sinica, 2021, 70(11): 117401. doi: 10.7498/aps.70.20202241
    [6] Wang Peng-Cheng, Cao Yi, Xie Hong-Guang, Yin Yao, Wang Wei, Wang Ze-Ying, Ma Xin-Chen, Wang Lin, Huang Wei. Magnetic properties of layered chiral topological magnetic material Cr1/3NbS2. Acta Physica Sinica, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [7] Meng Kang-Kang, Zhao Xu-Peng, Miao Jun, Xu Xiao-Guang, Zhao Jian-Hua, Jiang Yong. Topological Hall effect in ferromagnetic/non-ferromagnetic metals heterojunctions. Acta Physica Sinica, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [8] Xia Jing, Han Zong-Yi, Song Yi-Fan, Jiang Wen-Jing, Lin Liu-Rong, Zhang Xi-Chao, Liu Xiao-Xi, Zhou Yan. Overview of magnetic skyrmion-based devices and applications. Acta Physica Sinica, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [9] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [10] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [11] Zhang Nan, Zhang Bao, Yang Mei-Yin, Cai Kai-Ming, Sheng Yu, Li Yu-Cai, Deng Yong-Cheng, Wang Kai-You. Progress of electrical control magnetization reversal and domain wall motion. Acta Physica Sinica, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [12] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [13] Gu Xiao-Fang, Qian Xuan, Ji Yang, Chen Lin, Zhao Jian-Hua. Observation of current-induced polarization in (Ga,Mn)As via magneto-optic Kerr measurement. Acta Physica Sinica, 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [14] Yang Wei, Ji Yang, Luo Hai-Hui, Ruan Xue-Zhong, Wang Wei-Zhu, Zhao Jian-Hua. Electronic noise of diluted magnetic semiconductor (Ga,Mn)As around Curie point. Acta Physica Sinica, 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [15] Xu Jian-Wei, Wang Shun-Jin. Relativistic mean field theory of electron and first, second-order Rashba effects. Acta Physica Sinica, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [16] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [17] Ren Min, Zhang Lei, Hu Jiu-Ning, Deng Ning, Chen Pei-Yi. A macroscopic model of current-induced magnetization switching based on magnetic dynamic equation. Acta Physica Sinica, 2007, 56(5): 2863-2867. doi: 10.7498/aps.56.2863
    [18] Ren Jun-Feng, Fu Ji-Yong, Liu De-Sheng, Xie Shi-Jie. Diffusion theory of spin injection into organic polymers*. Acta Physica Sinica, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] Sun Feng-Wei, Deng Li, Shou Qian, Liu Lu-Ning, Wen Jin-Hui, Lai Tian-Shu, Lin Wei-Zhu. Femtosecond spectral studies of electron spin injection and relaxation in AlGaAs / GaAs MQW. Acta Physica Sinica, 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
    [20] Qin Jian-Hua, Guo Yong, Chen Xin-Yi, Gu Bing-Lin. A study on spin-polarized transport properties in magnetic-electric barrier st ructures. Acta Physica Sinica, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
Metrics
  • Abstract views:  1297
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  01 June 2023
  • Accepted Date:  12 July 2023
  • Available Online:  22 July 2023
  • Published Online:  20 October 2023

/

返回文章
返回