Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Current distribution and plasma velocity characteristics of parallel-plate accelerator under static pressure

Liu Shuai Xu Tao Liu Kang-Qi Zhang Yong-Peng Yang Lan-Jun

Citation:

Current distribution and plasma velocity characteristics of parallel-plate accelerator under static pressure

Liu Shuai, Xu Tao, Liu Kang-Qi, Zhang Yong-Peng, Yang Lan-Jun
PDF
HTML
Get Citation
  • Electromagnetic plasma accelerators which can generate high-density and hypervelocity plasma jets have been widely used in plasma physics research and application fields. An experimental platform of parallel-plate accelerator electromagnetically driven plasma is established in this paper, mainly including a parallel-plate accelerator, a power supply, magnetic probes, photodiodes, a current probe, and an oscilloscope. The current distribution and plasma velocity characteristics of a parallel-plate accelerator under static pressure are studied by using magnetic probe array and photodiode array. The working gas is synthetic air. A mechanical pump is used to pump the vacuum chamber to about 1 Pa, and then synthetic air is injected into the vacuum chamber to a target pressure. The power supply of the parallel-plate accelerator has a sinusoidal oscillation attenuation waveform with a total capacitance of 120 μF and a total inductance of about 400 nH. When the charging voltage is 13 kV, the discharge current is 170 kA and the pulse width is 23.5 μs. The discharge currents are 38, 100, 135 kA, and 170 kA when the pressures are 100, 200, 400 and 1000 Pa, respectively. The current distribution of the parallel-plate accelerator is concentrated, and the discharge mode is consistent with the snowplow mode, when the discharge current is small and the working pressure is high. As the discharge current increases or the working pressure decreases, a diffuse current distribution gradually appears in the parallel-plate accelerator. Two regions are formed, i.e. the plasma front region and the plasma tail region. The diffuse current distribution phenomenon is more remarkable when the discharge current is higher or the working pressure is lower. The plasma front current distribution proportion decreases and the plasma front velocity increases with the increase of discharge current and the decrease of working pressure. However, the plasma velocity proportion increased is much lower than the discharge current proportion increased or working pressure proportion decreased. When the discharge current increases from 38–170 kA, the plasma velocity increases from 25.0 km/s to 33.6 km/s, with the velocity increment being only 34.4%. The plasma front region is subjected to both the Lorentz force and the thermal pressure of the plasma tail region.
      Corresponding author: Liu Shuai, liushuai@xjtu.edu.cn
    • Funds: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JQ-044).
    [1]

    Loebner K T K, Underwood T C, Wang B C, Cappelli M A 2016 IEEE Trans. Plasma Sci. 44 1534Google Scholar

    [2]

    Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233Google Scholar

    [3]

    蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401Google Scholar

    Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401Google Scholar

    [4]

    Ticos C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar

    [5]

    Zhang Y, Gilmore M, Hsu S C, Fisher D M, Lynn A G 2017 Phys. Plasmas 24 110702Google Scholar

    [6]

    Underwood T C, Loebner K T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73Google Scholar

    [7]

    Kong D F, Zhuang G, Lan T, Zhang S B, Ye Y, Dong Q L, Chen C, Wu J, Zhang S, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Wen F, Zi P F, Li L, Hu G H, Song Y T 2023 Plasma Sci. Technol. 25 065601Google Scholar

    [8]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar

    [9]

    Cassibry J T, Stanic M, Hsu S C, Witherspoon F D, Abarzhi S I 2012 Phys. Plasmas 19 052702Google Scholar

    [10]

    Hsu S C, Moser A L, Merritt E C, Adams C S, Dunn J P, Brockington S, Case A, Gilmore M, Lynn A G, Messer S J, Witherspoon F D 2015 J. Plasma Physics 81 345810201Google Scholar

    [11]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar

    [12]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [13]

    Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847Google Scholar

    [14]

    Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769Google Scholar

    [15]

    Tou T Y 1995 IEEE Trans. Plasma Sci. 23 870Google Scholar

    [16]

    Al-Hawat S 2004 IEEE Trans. Plasma Sci. 32 764Google Scholar

    [17]

    Mathuthua M, Zengeni T G, Gholap A V 1996 Phys. Plasmas 3 4572Google Scholar

    [18]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar

    [19]

    Lee S 2014 J. Fusion Energ. 33 319Google Scholar

    [20]

    Lee S, Saw S H, Lee P C K, Rawat R S, Schmidt H 2008 Appl. Phys. Lett. 92 111501Google Scholar

    [21]

    Aghamira F M, Behbahani R A 2011 J. Appl. Phys. 109 043301Google Scholar

    [22]

    Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar

    [23]

    高著秀, 黄建国, 韩建伟, 杨宣宗, 冯春华 2010 航天器环境工程 27 285

    Gao Z X, Huang J G, Han J W, Yang X Z, Feng C H 2010 Spacecraft Environment Engineering 27 285

    [24]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [25]

    张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [26]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [27]

    杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113Google Scholar

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113Google Scholar

    [28]

    刘帅, 史宇昊, 林天煜, 张永鹏, 路志建, 杨兰均 2021 物理学报 70 205205Google Scholar

    Liu S, Shi Y H, Lin T Y, Zhang Y P, Lu Z J, Yang L J 2021 Acta Phys. Sin. 70 205205Google Scholar

  • 图 1  实验布置图

    Figure 1.  Experimental setup.

    图 2  磁探头线圈布置示意图

    Figure 2.  Schematic diagram of the magnetic probe coil setup.

    图 3  磁场波形和光电二极管波形 (a)磁场波形; (b)光电二极管波形

    Figure 3.  Magnetic field and photodiode waveforms: (a) Magnetic field waveform; (b) photodiode waveform.

    图 4  放电电流为100 kA时电流分布比例

    Figure 4.  Current distribution ratio when the current is 100 kA.

    图 5  不同电流下的波形图 (a) 38 kA, 磁场; (b) 38 kA, 光电二极管; (c) 135 kA, 磁场; (d) 135 kA, 光电二极管; (e) 170 kA, 磁场; (f) 170 kA, 光电二极管

    Figure 5.  Waveforms under different currents: (a) 38 kA, magnetic field; (b) 38 kA, photodiode; (c) 135 kA, magnetic field; (d) 135 kA, photodiode; (e) 170 kA, magnetic field; (f) 170 kA, photodiode.

    图 6  不同电流下的电流分布比例 (a) 38 kA; (b) 170 kA

    Figure 6.  Current distribution ratio under different currents: (a) 38 kA; (b) 170 kA.

    图 7  等离子体前沿速度与电流的关系

    Figure 7.  Relationship between plasma front velocity and current.

    图 8  不同静态气压下波形图 (a) 100 Pa, 磁场; (b) 100 Pa, 光电二极管; (c) 400 Pa, 磁场; (d) 400 Pa, 光电二极管; (e) 1000 Pa, 磁场; (f) 1000 Pa, 光电二极管

    Figure 8.  Waveforms under different pressure: (a) 100 Pa, magnetic field; (b) 100 Pa, photodiode; (c) 400 Pa, magnetic field; (d) 400 Pa, photodiode; (e) 1000 Pa, magnetic field; (f) 1000 Pa, photodiode.

    图 9  不同气压下的电流分布比例 (a) 100 Pa; (b) 1000 Pa

    Figure 9.  Current distribution ratio under different pressures: (a) 100 Pa; (b) 1000 Pa.

    图 10  等离子体前沿速度与气压的关系

    Figure 10.  Relationship between plasma front velocity and pressure.

    图 11  平行轨道区域划分示意图

    Figure 11.  Schematic diagram of the region in the parallel-plate.

  • [1]

    Loebner K T K, Underwood T C, Wang B C, Cappelli M A 2016 IEEE Trans. Plasma Sci. 44 1534Google Scholar

    [2]

    Sakuma I, Kikuchi Y, Kitagawa Y, Asai Y, Onishi K, Fukumoto N, Nagata M 2015 J. Nucl. Mater. 463 233Google Scholar

    [3]

    蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401Google Scholar

    Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401Google Scholar

    [4]

    Ticos C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar

    [5]

    Zhang Y, Gilmore M, Hsu S C, Fisher D M, Lynn A G 2017 Phys. Plasmas 24 110702Google Scholar

    [6]

    Underwood T C, Loebner K T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73Google Scholar

    [7]

    Kong D F, Zhuang G, Lan T, Zhang S B, Ye Y, Dong Q L, Chen C, Wu J, Zhang S, Zhao Z H, Meng F W, Zhang X H, Huang Y Q, Wen F, Zi P F, Li L, Hu G H, Song Y T 2023 Plasma Sci. Technol. 25 065601Google Scholar

    [8]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar

    [9]

    Cassibry J T, Stanic M, Hsu S C, Witherspoon F D, Abarzhi S I 2012 Phys. Plasmas 19 052702Google Scholar

    [10]

    Hsu S C, Moser A L, Merritt E C, Adams C S, Dunn J P, Brockington S, Case A, Gilmore M, Lynn A G, Messer S J, Witherspoon F D 2015 J. Plasma Physics 81 345810201Google Scholar

    [11]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar

    [12]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [13]

    Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847Google Scholar

    [14]

    Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769Google Scholar

    [15]

    Tou T Y 1995 IEEE Trans. Plasma Sci. 23 870Google Scholar

    [16]

    Al-Hawat S 2004 IEEE Trans. Plasma Sci. 32 764Google Scholar

    [17]

    Mathuthua M, Zengeni T G, Gholap A V 1996 Phys. Plasmas 3 4572Google Scholar

    [18]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar

    [19]

    Lee S 2014 J. Fusion Energ. 33 319Google Scholar

    [20]

    Lee S, Saw S H, Lee P C K, Rawat R S, Schmidt H 2008 Appl. Phys. Lett. 92 111501Google Scholar

    [21]

    Aghamira F M, Behbahani R A 2011 J. Appl. Phys. 109 043301Google Scholar

    [22]

    Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar

    [23]

    高著秀, 黄建国, 韩建伟, 杨宣宗, 冯春华 2010 航天器环境工程 27 285

    Gao Z X, Huang J G, Han J W, Yang X Z, Feng C H 2010 Spacecraft Environment Engineering 27 285

    [24]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [25]

    张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [26]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [27]

    杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113Google Scholar

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113Google Scholar

    [28]

    刘帅, 史宇昊, 林天煜, 张永鹏, 路志建, 杨兰均 2021 物理学报 70 205205Google Scholar

    Liu S, Shi Y H, Lin T Y, Zhang Y P, Lu Z J, Yang L J 2021 Acta Phys. Sin. 70 205205Google Scholar

  • [1] Zhang Jin-Shuo, Sun Hui, Du Zhi-Jie, Zhang Xue-Hang, Xiao Qing-Mei, Fan Jin-Rui, Yan Hui-Jie, Song Jian. Analysis and optimization of acceleration model in coaxial plasma gun in pre-fill mode. Acta Physica Sinica, 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [2] Chen Zhong-Qi, Zhong An, Dai Dong, Ning Wen-Jun. Effect of flow rate of shielding gas on distribution of particles in coaxial double-tube helium atmospheric pressure plasma jet. Acta Physica Sinica, 2022, 71(16): 165201. doi: 10.7498/aps.71.20220421
    [3] Liu Shuai, Shi Yu-Hao, Lin Tian-Yu, Zhang Yong-Peng, Lu Zhi-Jian, Yang Lan-Jun. Influence of operating parameters on discharge mode of parallel-rail accelerator. Acta Physica Sinica, 2021, 70(20): 205205. doi: 10.7498/aps.70.20210484
    [4] Yu Xin, Qi Liang-Wen, Zhao Chong-Xiao, Ren Chun-Sheng. Comparative study of positive and negative pulsed discharge plasma characteristics of coaxial gun. Acta Physica Sinica, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [5] Liu Shuai, Huang Yi-Zhi, Guo Hai-Shan, Zhang Yong-Peng, Yang Lan-Jun. Plasma dynamic characteristics of a parallel-rail accelerator. Acta Physica Sinica, 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [6] Zhou Wen, Ji Ke, Chen He-Ming. Parallel magneticcontrolled THz modulator based on two-dimensional magnetized plasma photonic crystal. Acta Physica Sinica, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [7] Xiang Fei, Wu Ping, Zeng Fan-Guang, Wang Gan-Ping, Li Chun-Xia, Ju Bing-Quan. Fast-pulse repetitive frequency emission characteristic of high current carbon nanotubes cathode. Acta Physica Sinica, 2015, 64(16): 164103. doi: 10.7498/aps.64.164103
    [8] Zhou Lin, Xue Fei-Biao, Si Fen-Ni, Yang Jian-Lun, Ye Fan, Xu Rong-Kun, Hu Qing-Yuan, Fu Yue-Cheng, Jiang Shu-Qiang, Li Lin-Bo, Chen Jin-Chuan, Xu Ze-Ping. Experimental sduty of current distribution in wirearray Zpinch plasma. Acta Physica Sinica, 2012, 61(19): 195207. doi: 10.7498/aps.61.195207
    [9] Zhong Guang-Ming, Du Xiao-Qing, Tang Jie-Ling, Dong Xiang-Kun, Lei Xiao-Hua, Chen Wei-Min. Analysis of influencing factors on current spreading of flip-chip light-emitting diodes (LEDs). Acta Physica Sinica, 2012, 61(12): 127803. doi: 10.7498/aps.61.127803
    [10] Wu Zhen-Yu, Yang Yin-Tang, Wang Jia-You. Study on current distribution and radiation characteristics of plasma antennas. Acta Physica Sinica, 2010, 59(3): 1890-1894. doi: 10.7498/aps.59.1890
    [11] Wang Bao-Qiang, Xu Chen, Liu Ying-Ming, Xie Yi-Yang, Liu Fa, Zhao Zhen-Bo, Zhou Kang, Shen Guang-Di. Study on current spreading of photonic crystal vertical cavity surface emitting lasers. Acta Physica Sinica, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [12] Ge Hong, Zhang Xiao-Dan, Yue Qiang, Zhao Jing, Zhao Ying. Study of space voltage distribution between large-area parallel-plate electrodes for very high frequency plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2008, 57(8): 5105-5110. doi: 10.7498/aps.57.5105
    [13] Zhou Guo-Cheng, Cao Jin-Bin, Wang De-Ju, Cai Chun-Lin. Low-frequency waves in collisionless plasma current sheet. Acta Physica Sinica, 2004, 53(8): 2644-2653. doi: 10.7498/aps.53.2644
    [14] FENG XIAN-PING, XU ZHI-ZHAN, JIANG ZHI-MING, ZHANG ZHENG-QUAN, CHEN SHI-SHENG, FAN PIN-ZHONG, TIAN LI, ZHOU ZI-JIN. SPACE DISTRIBUTION OF HIGH IONIZING IONS IN PLASMA. Acta Physica Sinica, 1988, 37(7): 1183-1187. doi: 10.7498/aps.37.1183
    [15] WANG RUN-WRN, PAN CHENG-MIN, LIN ZHUN-QI, ZHU DA-QING, HE XIN-FA, ZHAN JI-RAN, WANG XIAO-QING, CHENG ZHONG-YU, BAI JIAN-RONG, JIANG MING-HUA. SPONTANEOUS CURRENT GENERATED FROM LASER PLASMA. Acta Physica Sinica, 1987, 36(4): 452-458. doi: 10.7498/aps.36.452
    [16] CHEN YA-SHEN. THE PLASMA DRIVEN BY ELECTRONS WITH TWO-MAXWELL DISTRIBUTION. Acta Physica Sinica, 1986, 35(6): 762-770. doi: 10.7498/aps.35.762
    [17] XIA MENG-FEN. STOCHASTIC CURRENT DRIVEN BY A WAVE. Acta Physica Sinica, 1983, 32(3): 338-345. doi: 10.7498/aps.32.338
    [18] XIA MENG-FEN, HU HUI-LING. CURRENTS DRIVEN BY HIGH FREQUENCY ELECTROMAGNETIC WAVES. Acta Physica Sinica, 1982, 31(2): 150-158. doi: 10.7498/aps.31.150
    [19] XIA MENG-FEN, ZHANG CHENG-FU. CHARACTERISTICS OF R. F. DRIVEN CURRENT. Acta Physica Sinica, 1981, 30(10): 1307-1317. doi: 10.7498/aps.30.1307
    [20] HUO YU-PING. THE STATIC STABILITY OF PLASMA. Acta Physica Sinica, 1977, 26(2): 149-154. doi: 10.7498/aps.26.149
Metrics
  • Abstract views:  1220
  • PDF Downloads:  32
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2023
  • Accepted Date:  25 July 2023
  • Available Online:  26 July 2023
  • Published Online:  05 October 2023

/

返回文章
返回