Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-mode up/down-conversion optical thermometry of Pr3+-regulated Li0.9K0.1NbO3:Er3+ phosphors

Jia Chao-Yang Yang Xue Wang Zhi-Gang Chai Rui-Peng Pang Qing Zhang Xiang-Yu Gao Dang-Li

Citation:

Dual-mode up/down-conversion optical thermometry of Pr3+-regulated Li0.9K0.1NbO3:Er3+ phosphors

Jia Chao-Yang, Yang Xue, Wang Zhi-Gang, Chai Rui-Peng, Pang Qing, Zhang Xiang-Yu, Gao Dang-Li
PDF
HTML
Get Citation
  • Photothermal sensing is crucial in developing smart wearable devices. However, designing and synthesizing luminescent materials with suitable multi-wavelength emission and constructing multiple sets of probes in a single material system is a huge challenge for constructing sensitive temperature sensors with a wide temperature range. In this paper, Pr3+, Er3+ single-doped and double-doped Li0.9K0.1NbO3 phosphors are successfully prepared by high temperature solid phase method, and their structures, morphologies, excitation wavelengths and temperature-dependent fluorescence properties are characterized by XRD, SEM, fluorescence spectrometer and self-made heating device. Firstly, the photoluminescences of the synthesized series of samples are investigated. The results show that comparing with the single-doped Li0.9K0.1NbO3: Er3+ sample, the up/down-conversion spectra of Pr3+, Er3+ co-doped phosphors under 808 nm/380 nm excitation show that the green fluorescence emission of Er3+ is enhanced. In addition, under 980 nm excitation, Pr3+ can effectively regulate the fluorescence energy level population pathway, so that the electrons are more effectively arranged in the 2H11/2 and 4S3/2 energy levels in the excitation process. The red emission is weakened and the green emission is enhanced, which improves the signal resolution of the fluorescent material and has a significant influence on the optical temperature measurement. Secondly, the up-conversion fluorescence property of Er3+ under 808 nm/980 nm laser excitation in Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Pr3+,Er3+ phosphors are investigated. The results show that the red and green fluorescence emissions of Er3+ are two-photon processes. Finally, the up/down-conversion dual-mode temperature sensing properties of Er3+ in Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Pr3+, Er3+ phosphors are investigated. It is found that both materials have good optical temperature measurement performances. The Pr3+ doping optimizes the dual-mode optical temperature measurement performances of Li0.9K0.1NbO3:Er3+ phosphors derived from the thermal coupling energy level of Er3+ ions. In addition, the up/down-conversion fluorescence mechanism of Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Er3+, Pr3+ phosphors are proposed, and the enhanced green fluorescence by Pr3+ co-doping is attributed to the energy transfer from Pr3+ ions to Er3+ ions, leading to the increase of green fluorescence level population and the decrease of red fluorescence level population of the Er3+ ions. This new dual-mode optical temperature measurement material provides a material basis and optical temperature measurement technology for exploring other temperature measurement materials.
      Corresponding author: Gao Dang-Li, gaodangli@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604253, 51672208), the Key Science and Technology Innovation Team of Shaanxi Province, China (Grant No. 2022TD-34), and the Fundamental Research Funds for the Central Universities, China (Grant No. 300102120101).
    [1]

    Abbas M T, Khan N Z, Mao J, Qiu L, Wei X, Chen Y, Khan S A 2022 Mater. Today Chem. 24 100903Google Scholar

    [2]

    Hua Y B, Yu J S 2021 ACS Sustainable Chem. Eng. 9 5105Google Scholar

    [3]

    Wang X F, Liu Q, Bu Y Y, Liu C S, Liu T, Yan X H 2015 RSC Adv. 5 86219Google Scholar

    [4]

    Chen Y H, Chen J, Tong Y, Zhang W N, Peng X S, Guo H, Huang D X 2021 J. Rare Earths 39 1512Google Scholar

    [5]

    Tian Y, Tian B N, Cui C, Huang P, Wang L, Chen B J 2015 RSC Adv. 5 14123Google Scholar

    [6]

    Zhang J, Chen J J, Jin C 2020 J. Alloys Compd. 846 156397Google Scholar

    [7]

    León-Luis S F, Rodríguez-Mendoza U R, Martín I R, Lalla E, Lavín V 2013 Sens. Actuators, B 176 1167Google Scholar

    [8]

    Alencar M A, Maciel G S, de Araújo C B, Patra A 2004 Appl. Phys. Lett. 84 4753Google Scholar

    [9]

    Suo H, Guo C F, Li T 2016 J. Phys. Chem. C 120 2914Google Scholar

    [10]

    Zheng W, Sun B Y, Li Y M, Lei T, Wang R, Wu J Z 2020 ACS Sustainable Chem. Eng. 8 9578Google Scholar

    [11]

    Yu D C, Li H Y, Zhang D W, Zhang Q Y, Meijerink A, Suta M 2021 Light-Sci. Appl. 10 236Google Scholar

    [12]

    Singh A K, Singh S K, Gupta B K, Prakash R, Rai S B 2013 Dalton Trans. 42 1065Google Scholar

    [13]

    Zhao C L, Gao Y, Zhou D C, Zhu F M, Chen J Y, Qiu J B 2023 J. Alloys Compd. 944 169134Google Scholar

    [14]

    Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023 J. Alloys Compd. 946 169350Google Scholar

    [15]

    阿热帕提·夏克尔, 王林香, 李晴, 柏云凤, 穆妮热·买买提 2023 物理学报 72 060701Google Scholar

    Arepati X, Wang L X, Li Q, Bai Y F, Munire M 2023 Acta Phys. Sin. 72 060701Google Scholar

    [16]

    Chen J, Guo J J, Chen Y H, Peng X S, Ashraf G A, Guo H 2021 J. Lumin. 238 118294Google Scholar

    [17]

    Gao D L, Zhao D, Pan Y, Chai R P, Pang Q, Zhang X Y, Chen W 2021 Ceram. Int. 47 32000Google Scholar

    [18]

    Li T, Guo C F, Zhou S H, Duan C K, Yin M 2015 J. Am. Ceram. Soc. 98 2812Google Scholar

    [19]

    Wu Y F, Suo H, He D, Guo C F 2018 Mater. Res. Bull. 106 14Google Scholar

    [20]

    Li X F, Guan L L, Li Y, Sun H Q, Zhang Q W, Hao X H 2020 J. Mater. Chem. C 8 15685Google Scholar

    [21]

    Gao D L, Gao F, Wu J L, Kuang Q Q, Xing C, Chen W 2022 Appl. Surf. Sci. 587 152820Google Scholar

    [22]

    Jilili S, Aierken P, Wang Q L, Tuerxun A, Wang L, Sidike A 2022 Ceram. Int. 48 15755Google Scholar

    [23]

    Maurya A, Bahadur A, Dwivedi A, Choudhary A K, Yadav T P, Vishwakarma P K, Rai S B 2018 J. Phys. Chem. Solids 119 228Google Scholar

    [24]

    Gao D L, Gao J, Zhao D, Pang Q, Xiao G Q, Wang L L, Ma K W 2020 J. Mater. Chem. C 8 17318Google Scholar

    [25]

    Tan S Y, Wang X S, Zhao Y, Li Y X, Yao X 2023 J. Lumin. 257 119747Google Scholar

    [26]

    Lu H Y, Lu Y, Zhu J, Li J X, Wang J Y, Zou H 2023 Phys. Status Solidi RRL 17 2200379Google Scholar

    [27]

    Kolesnikov I E, Mamonova D V, Kurochkin M A, Medvedev V A, Bai G X, Ivanova T Y, Kolesnikov E Y 2022 Phys. Chem. Chem. Phys. 24 15349Google Scholar

    [28]

    Liu Y, Bai G X, Pan E, Hua Y J, Chen L, Xu S Q 2020 J. Alloys Compd. 822 153449Google Scholar

    [29]

    Rakov N, Maciel G S 2014 Dalton Trans. 43 16025Google Scholar

    [30]

    Cortés-Adasme E, Vega M, Martin I R, Llanos J 2017 RSC Adv. 7 46796Google Scholar

    [31]

    Girisha H R, Lavanya D R, Daruka P B, Sharma S C, Nagabhushana H 2022 Opt. Mater. 134 113053Google Scholar

    [32]

    Raju G S R, Pavitra E, Rao G M, Jeon T J, Jeon S W, Huh Y S, Han Y K 2018 J. Alloys Compd. 756 82Google Scholar

    [33]

    Sahu M K, Jayasimhadri M, Haranath D 2022 Solid State Sci. 131 106956Google Scholar

    [34]

    Fu J, Zhou L Y, Chen Y L, Lin J H, Ye R G, Lei L, Shen Y, Deng D G, Xu S 2023 J. Am. Ceram. Soc. 106 1333Google Scholar

    [35]

    Zhu Y, Li X F, Guo Z Z, Sun H Q, Zhang Q W, Hao X H 2020 J. Am. Ceram. Soc. 103 3205Google Scholar

    [36]

    Banwal A, Bokolia R 2022 Ceram. Int. 48 2230Google Scholar

    [37]

    Fan Y, Xiao Q, Yin X M, Lv L, Wu X Y, Dong X Y, Xing M M, Tian Y, Luo X X 2022 Solid State Sci. 132 106966Google Scholar

    [38]

    Liu Q, Pan E, Deng H, Liu F C 2023 Ceram. Int. 49 14981Google Scholar

    [39]

    Chen Y L, Lin J H, Fu J, Ye R G, Lei L, Shen Y, Deng D G, Xu S Q 2022 J. Lumin. 252 119404Google Scholar

    [40]

    Yin X M, Xiao Q, Lü L, Wu X Y, Dong X Y, Fan Y, Zhou N, Luo X X 2023 Spectrochim. Acta, Part A 291 122324Google Scholar

    [41]

    Zhou W, Yang J, Jin X L, Peng Y, Luo J 2022 J. Lumin. 252 119275Google Scholar

    [42]

    Liu Y W, Meng L S, Wang H, Jiao J X, Xing M M, Peng Y, Luo X X, Tian Y 2021 Dalton Trans. 50 960Google Scholar

  • 图 1  (a) Li0.9K0.1NbO3:Ln3+系列样品的XRD图; (b) Li0.9K0.1NbO3的晶体结构图

    Figure 1.  (a) XRD patterns of a series of Li0.9K0.1NbO3:Ln3+ samples; (b) crystal structure of Li0.9K0.1NbO3.

    图 2  Li0.9K0.1NbO3:Ln3+样品的SEM图片及EDX元素谱 (a) Li0.9K0.1NbO3:Er3+的SEM图片; (b) Li0.9K0.1NbO3:Pr3+, Er3+的SEM图片; (c) Li0.9K0.1NbO3:Er3+荧光粉的EDX元素分布图谱

    Figure 2.  SEM images and element mappings of Li0.9K0.1NbO3:Ln3+ phosphors: (a) SEM image of Li0.9K0.1NbO3:Er3+; (b) SEM image of Li0.9K0.1NbO3:Pr3+, Er3+; (c) EDX elemental distribution spectra of Li0.9K0.1NbO3:Er3+ phosphors.

    图 3  不同波长激发下, Li0.9K0.1NbO3:Ln3+的上/下转换发射谱比较 (a) Pr3+和Er3+单掺样品及Pr3+, Er3+共掺样品的发射谱 (λex = 280 nm/380 nm); (b) Pr3+, Er3+共掺样品的激发谱(λmoni = 554 nm/620 nm); Er3+单掺及Pr3+, Er3+共掺样品在(c) λex= 808 nm, (d) 980 nm激光激发下的上转换发射谱

    Figure 3.  Comparison of up-conversion and down-conversion emission spectra of rare earth doped Li0.9K0.1NbO3:Ln3+ under different excitation wavelengths: (a) Emission spectra of Pr3+ and Er3+ single-doped samples and Pr3+, Er3+ co-doped samples (λex = 280 nm/380 nm); (b) excitation spectra of Pr3+, Er3+ co-doped samples (λmoni = 554 nm/620 nm); (c), (d) up-conversion emission spectra of Er3+ single doped and Pr3+, Er3+ co-doped samples under 808 and 980 nm excitations.

    图 4  激发功率依赖的Li0.9K0.1NbO3:Er3+和Li0.9K0.1NbO3:Pr3+, Er3+荧光粉的发射谱, 其中内插图为对应发光强度与入射激光的功率关系 (a), (b) Li0.9K0.1NbO3:Er3+荧光粉的发射谱(λex = 808 nm和λex = 980 nm); (c), (d) Li0.9K0.1NbO3:Pr3+, Er3+荧光粉的发射谱(λex = 808 nm和λex = 980 nm)

    Figure 4.  Excitation power-dependent emission spectra of Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Pr3+, Er3+ phosphors, where the insets are the relationships between luminescence intensity and incident laser power: (a), (b) Emission spectra of Li0.9K0.1NbO3:Er3+ phosphors (λex = 808 nm and λex = 980 nm); (c), (d) emission spectra of Li0.9K0.1NbO3:Pr3+, Er3+ phosphors (λex = 808 nm and λex = 980 nm).

    图 5  Li0.9K0.1NbO3:Er3+荧光粉的上、下转换测温性能 (a)—(c) 分别在380, 808, 980 nm激发下的发射谱; (d)—(f) 相应于图(a)—(c)中的上/下转换发射谱的双峰绿色FIR与温度的关系; (g)—(i) 相应于图(d)—(f)中双峰荧光强度比率测温的灵敏度曲线

    Figure 5.  Up/down-conversion temperature measurement performance of Li0.9K0.1NbO3:Er3+ phosphor: (a)–(c) The emission spectra excited at 380, 808 and 980 nm, respectively; (d)–(f) the relationship between the bimodal green FIR and temperature corresponding to the up/down-conversion emission spectra in panel (a)–(c); (g)–(i) the sensitivity curves of temperature measurement of bimodal FIR corresponding to panel (d)–(f).

    图 6  Li0.9K0.1NbO3:Pr3+, Er3+荧光粉的上/下转换双模式光学测温性能 (a)—(c) 分别在380, 808, 980 nm激发下的发射谱; (d)—(f) 相应于图(a)—(c)中的上/下转换发射谱的双峰绿色FIR与温度的关系; (g)—(i) 相应于图(d)—(f)中双峰FIR测温的灵敏度曲线

    Figure 6.  Up/down-conversion temperature measurement performance of Li0.9K0.1NbO3:Pr3+, Er3+ phosphor: (a)–(c) The emission spectra excited at 380, 808, and 980 nm, respectively; (d)–(f) the relationship between the bimodal green FIR and temperature corresponding to the up/down-conversion emission spectra in panel (a)–(c); (g)–(i) the sensitivity curves of temperature measurement of bimodal FIR corresponding to panel (d)–(f).

    图 7  源自于Li0.9K0.1NbO3:Er3+和Li0.9K0.1NbO3:Er3+, Pr3+荧光粉的上/下转换荧光机理图, 其中, VB表示价带, CB表示导带

    Figure 7.  Proposed mechanism of up/down-conversion fluorescence of Li0.9K0.1NbO3:Er3+ and Li0.9K0.1NbO3:Er3+, Pr3+ phosphors. Therein, VB and CB represent valence band and conduction band, respectively.

    表 1  基于FIR技术下不同基质中掺杂Er3+的温度传感材料光学参数

    Table 1.  Optical parameters of temperature sensing materials doped with Er3+ in different substrates based on FIR technology

    Materials Wavelength/nm Sr-Max/(10–2 K–1) Sa-Max/(10–2 K–1) References
    SrSnO3:Er 975 nm 0.997(294 K) 0.791(368 K) [30]
    BaBiNb2O9:Er 980 nm 0.959(300 K) 0.996(483 K) [36]
    La2CaZnO5:Er 378 nm 1.454(300 K) [31]
    Sr2Gd8(SiO4)6O2:Er 379 nm 0.34(463 K) [32]
    Ca3Bi(PO4)3:Er 376 nm 1.21(300 K) 0.312(473 K) [33]
    La2Mo2O9:Er 980 nm 1.16(293 K) 0.527(493 K) [37]
    (K, Na)NbO3:Er 980 nm
    375 nm
    0.96(303 K)
    16.17(80 K)
    0.28(433 K)
    0.37(280 K)
    [38]
    Cs3Bi2Cl9:Er 808 nm
    980 nm
    1.4(303 K)
    1.38(303 K)
    0.62(573 K)
    0.61(573 K)
    [13]
    Li0.9K0.1NbO3:Er 380 nm
    808 nm
    980 nm
    0.97(303 K)
    1.286(297 K)
    1.221(297 K)
    0.44(463 K)
    0.89(443 K)
    0.81(443 K)
    This
    work
    DownLoad: CSV

    表 2  基于FIR技术下不同基质中掺杂Er3+-Ln3+的温度传感材料光学参数

    Table 2.  Optical parameters of temperature sensing materials doped with Er3+-Ln3+ in different substrates based on FIR technology.

    Materials Wavelength/nm Sr-Max/(10–2 K–1) Sa-Max/(10–2 K–1) References
    La2MgGeO6:Bi, Er 980 nm 1.23(293 K) 0.94(473 K) [39]
    K3Gd(PO4)2:Yb, Er, Tm 980 nm 1.35(300 K) 0.456(608 K) [40]
    NaLuF4:Er, Tm 1532 nm 1.265(293 K) 0.4(519 K) [41]
    BiVO4:Er, Tm 980 nm 1.1(293 K) 0.7(473 K) [42]
    1550 nm 1.1(293 K) 0.56(453 K)
    Y2SiO5:Er, Tm 808 nm 0.395(298 K) [29]
    KYb(MoO4)2:Er, Gd 980 nm 1.1(303 K) 0.97(513 K) [25]
    KYb(MoO4)2:Er, La 1.1(303 K) 0.95(513 K)
    KYb(MoO4)2:Er, Y 1.11(303 K) 0.91(513 K)
    Li0.9K0.1NbO3:Pr, Er 380 nm 1.12(296 K) 0.54(434 K) This
    work
    808 nm 1.284(296 K) 1.12(443 K)
    980 nm 1.106(296 K) 0.83(443 K)
    DownLoad: CSV
  • [1]

    Abbas M T, Khan N Z, Mao J, Qiu L, Wei X, Chen Y, Khan S A 2022 Mater. Today Chem. 24 100903Google Scholar

    [2]

    Hua Y B, Yu J S 2021 ACS Sustainable Chem. Eng. 9 5105Google Scholar

    [3]

    Wang X F, Liu Q, Bu Y Y, Liu C S, Liu T, Yan X H 2015 RSC Adv. 5 86219Google Scholar

    [4]

    Chen Y H, Chen J, Tong Y, Zhang W N, Peng X S, Guo H, Huang D X 2021 J. Rare Earths 39 1512Google Scholar

    [5]

    Tian Y, Tian B N, Cui C, Huang P, Wang L, Chen B J 2015 RSC Adv. 5 14123Google Scholar

    [6]

    Zhang J, Chen J J, Jin C 2020 J. Alloys Compd. 846 156397Google Scholar

    [7]

    León-Luis S F, Rodríguez-Mendoza U R, Martín I R, Lalla E, Lavín V 2013 Sens. Actuators, B 176 1167Google Scholar

    [8]

    Alencar M A, Maciel G S, de Araújo C B, Patra A 2004 Appl. Phys. Lett. 84 4753Google Scholar

    [9]

    Suo H, Guo C F, Li T 2016 J. Phys. Chem. C 120 2914Google Scholar

    [10]

    Zheng W, Sun B Y, Li Y M, Lei T, Wang R, Wu J Z 2020 ACS Sustainable Chem. Eng. 8 9578Google Scholar

    [11]

    Yu D C, Li H Y, Zhang D W, Zhang Q Y, Meijerink A, Suta M 2021 Light-Sci. Appl. 10 236Google Scholar

    [12]

    Singh A K, Singh S K, Gupta B K, Prakash R, Rai S B 2013 Dalton Trans. 42 1065Google Scholar

    [13]

    Zhao C L, Gao Y, Zhou D C, Zhu F M, Chen J Y, Qiu J B 2023 J. Alloys Compd. 944 169134Google Scholar

    [14]

    Wang Z Y, Zhang F H, Datsenko O I, Golovynskyi S, Sun Z H, Li B K, Wu H L 2023 J. Alloys Compd. 946 169350Google Scholar

    [15]

    阿热帕提·夏克尔, 王林香, 李晴, 柏云凤, 穆妮热·买买提 2023 物理学报 72 060701Google Scholar

    Arepati X, Wang L X, Li Q, Bai Y F, Munire M 2023 Acta Phys. Sin. 72 060701Google Scholar

    [16]

    Chen J, Guo J J, Chen Y H, Peng X S, Ashraf G A, Guo H 2021 J. Lumin. 238 118294Google Scholar

    [17]

    Gao D L, Zhao D, Pan Y, Chai R P, Pang Q, Zhang X Y, Chen W 2021 Ceram. Int. 47 32000Google Scholar

    [18]

    Li T, Guo C F, Zhou S H, Duan C K, Yin M 2015 J. Am. Ceram. Soc. 98 2812Google Scholar

    [19]

    Wu Y F, Suo H, He D, Guo C F 2018 Mater. Res. Bull. 106 14Google Scholar

    [20]

    Li X F, Guan L L, Li Y, Sun H Q, Zhang Q W, Hao X H 2020 J. Mater. Chem. C 8 15685Google Scholar

    [21]

    Gao D L, Gao F, Wu J L, Kuang Q Q, Xing C, Chen W 2022 Appl. Surf. Sci. 587 152820Google Scholar

    [22]

    Jilili S, Aierken P, Wang Q L, Tuerxun A, Wang L, Sidike A 2022 Ceram. Int. 48 15755Google Scholar

    [23]

    Maurya A, Bahadur A, Dwivedi A, Choudhary A K, Yadav T P, Vishwakarma P K, Rai S B 2018 J. Phys. Chem. Solids 119 228Google Scholar

    [24]

    Gao D L, Gao J, Zhao D, Pang Q, Xiao G Q, Wang L L, Ma K W 2020 J. Mater. Chem. C 8 17318Google Scholar

    [25]

    Tan S Y, Wang X S, Zhao Y, Li Y X, Yao X 2023 J. Lumin. 257 119747Google Scholar

    [26]

    Lu H Y, Lu Y, Zhu J, Li J X, Wang J Y, Zou H 2023 Phys. Status Solidi RRL 17 2200379Google Scholar

    [27]

    Kolesnikov I E, Mamonova D V, Kurochkin M A, Medvedev V A, Bai G X, Ivanova T Y, Kolesnikov E Y 2022 Phys. Chem. Chem. Phys. 24 15349Google Scholar

    [28]

    Liu Y, Bai G X, Pan E, Hua Y J, Chen L, Xu S Q 2020 J. Alloys Compd. 822 153449Google Scholar

    [29]

    Rakov N, Maciel G S 2014 Dalton Trans. 43 16025Google Scholar

    [30]

    Cortés-Adasme E, Vega M, Martin I R, Llanos J 2017 RSC Adv. 7 46796Google Scholar

    [31]

    Girisha H R, Lavanya D R, Daruka P B, Sharma S C, Nagabhushana H 2022 Opt. Mater. 134 113053Google Scholar

    [32]

    Raju G S R, Pavitra E, Rao G M, Jeon T J, Jeon S W, Huh Y S, Han Y K 2018 J. Alloys Compd. 756 82Google Scholar

    [33]

    Sahu M K, Jayasimhadri M, Haranath D 2022 Solid State Sci. 131 106956Google Scholar

    [34]

    Fu J, Zhou L Y, Chen Y L, Lin J H, Ye R G, Lei L, Shen Y, Deng D G, Xu S 2023 J. Am. Ceram. Soc. 106 1333Google Scholar

    [35]

    Zhu Y, Li X F, Guo Z Z, Sun H Q, Zhang Q W, Hao X H 2020 J. Am. Ceram. Soc. 103 3205Google Scholar

    [36]

    Banwal A, Bokolia R 2022 Ceram. Int. 48 2230Google Scholar

    [37]

    Fan Y, Xiao Q, Yin X M, Lv L, Wu X Y, Dong X Y, Xing M M, Tian Y, Luo X X 2022 Solid State Sci. 132 106966Google Scholar

    [38]

    Liu Q, Pan E, Deng H, Liu F C 2023 Ceram. Int. 49 14981Google Scholar

    [39]

    Chen Y L, Lin J H, Fu J, Ye R G, Lei L, Shen Y, Deng D G, Xu S Q 2022 J. Lumin. 252 119404Google Scholar

    [40]

    Yin X M, Xiao Q, Lü L, Wu X Y, Dong X Y, Fan Y, Zhou N, Luo X X 2023 Spectrochim. Acta, Part A 291 122324Google Scholar

    [41]

    Zhou W, Yang J, Jin X L, Peng Y, Luo J 2022 J. Lumin. 252 119275Google Scholar

    [42]

    Liu Y W, Meng L S, Wang H, Jiao J X, Xing M M, Peng Y, Luo X X, Tian Y 2021 Dalton Trans. 50 960Google Scholar

  • [1] Liu Shun-Rui, Nie Zhao-Ting, Zhang Ming-Lei, Wang Li, Leng Yan-Bing, Sun Yan-Jun. Improvement in the efficiency of up-conversion infrared photodetector by nanospheres. Acta Physica Sinica, 2017, 66(18): 188501. doi: 10.7498/aps.66.188501
    [2] Wang Chao, Hao Zhi-Biao, Wang Lei, Kang Jian-Bin, Xie Li-Li, Luo Yi, Wang Lai, Wang Jian, Xiong Bing, Sun Chang-Zheng, Han Yan-Jun, Li Hong-Tao, Wang Lu, Wang Wen-Xin, Chen Hong. Improvement on the efficiency of up-conversion infrared photodetectors using surface microstructure. Acta Physica Sinica, 2016, 65(10): 108501. doi: 10.7498/aps.65.108501
    [3] Pan An, Zhang Xiao-Fei, Wang Bin, Zhao Qing, Shi Yi-Shi. Experimental study on three-dimensional ptychography for thick sample. Acta Physica Sinica, 2016, 65(1): 014204. doi: 10.7498/aps.65.014204
    [4] Pan An, Wang Dong, Shi Yi-Shi, Yao Bao-Li, Ma Zhen, Han Yang. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination. Acta Physica Sinica, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [5] Lin You-You, Li Jiang-Tao, Zhu Hai-Yong, Liao Xiao-Qing, Duan Yan-Min, Zhang Jian, Tang Ding-Yuan. Multiple weak-line laser operation from Nd:YAG 4F3/2-4I13/2 translation in ceramic and crystal. Acta Physica Sinica, 2015, 64(20): 204204. doi: 10.7498/aps.64.204204
    [6] Di Hui-Ge, Hou Xiao-Long, Zhao Hu, Yan Lei-Jie, Wei Xin, Zhao Huan, Hua Deng-Xin. Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar. Acta Physica Sinica, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [7] Xue Ming-Xi, Chen Zhi-Bin, Wang Wei-Ming, Ouyang Hui-Quan, Liu Xian-Hong, Song Yan, Zhang Chao, Xiao Wen-Jian, Hou Zhang-Ya. Research on spectral peaks thermal-drifting in multi-wavelength infrared laser diode. Acta Physica Sinica, 2014, 63(15): 154206. doi: 10.7498/aps.63.154206
    [8] Yue Xiao-Lin, Wang Jin-Dong, Wei Zheng-Jun, Guo Bang-Hong, Liu Song-Hao. A new multi-wavelength two-way quantum key distribution system with a single optical source. Acta Physica Sinica, 2012, 61(18): 184215. doi: 10.7498/aps.61.184215
    [9] Zhu Hua-Chun, Zhang Chun-Min. Theoretical study of polarization atmosphere Michelsoninterferometer using multi-wavelength. Acta Physica Sinica, 2011, 60(7): 074211. doi: 10.7498/aps.60.074211
    [10] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. Coherent beam combining of multi-wavelength lasers based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [11] Zhang Jing, Pan Wei, Yan Lian-Shan, Luo Bin. Dispersion management optimization of multi-wavelength all-optical regeneration based on self-phase modulation. Acta Physica Sinica, 2010, 59(10): 7002-7007. doi: 10.7498/aps.59.7002
    [12] Zhou Ya-Xun, Dai Shi-Xun, Zhou Ling, Xu Tie-Feng, Nie Qiu-Hua, Huang Shang-Lian. Energy transfer via cooperative upconversion between Er3+ ions in a tellurite glass. Acta Physica Sinica, 2009, 58(2): 1261-1268. doi: 10.7498/aps.58.1261
    [13] Li Pei-Li, Huang De-Xiu, Zhang Xin-Liang, Zhu Guang-Xi. Wavelength converter based on cross-gain modulation in multi-electrode single-port-coupled semiconductor optical amplifier. Acta Physica Sinica, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [14] Li Shan-Feng, Miao Zhuang, Peng Yang, Zhang Qing-Yu. Optical properties and cooperative luminescence of Yb-doped borate-silicate glasses. Acta Physica Sinica, 2006, 55(8): 4315-4320. doi: 10.7498/aps.55.4315
    [15] Wen Lei, Zhang Li-Yan, Yang Jian-Hu, Wang Guo-Nian, Chen Wei, Hu Li- Li. Upconversion emission properties of Er3+ in fluoride (halide) phosphate tellurite glasses. Acta Physica Sinica, 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [16] Wu Zhao-Hui, Song Feng, Liu Shu-Jing, Qin Bin, Su Jing, Tian Jian-Guo, Zhang Guang-Yin. Influence of upconversion effect on Er3+, Yb3+co-doped phosphate glass lasers. Acta Physica Sinica, 2005, 54(12): 5637-5641. doi: 10.7498/aps.54.5637
    [17] Jian Ji-Qi, Ma Cheng, Jia Hui-Bo. Modeling and canceling of the readout crosstalk in photochromic dual-wavelength storage. Acta Physica Sinica, 2005, 54(8): 3604-3609. doi: 10.7498/aps.54.3604
    [18] Wen Lei, Yang Jian-Hu, Hu Li-Li. Determination of upconversion state lifetime and upconversion mechanisms of Er3+ in tellurite glasses. Acta Physica Sinica, 2004, 53(12): 4378-4381. doi: 10.7498/aps.53.4378
    [19] Qi Guo-Sheng, Xiao Jia-Xi, Liu Rong, Jiang Pei-Jun, She Peng, Xu Duan-Yi. Study on multi-wavelength photochromic storage of diarylethene. Acta Physica Sinica, 2004, 53(4): 1076-1080. doi: 10.7498/aps.53.1076
    [20] HAO ZHAO, CHEN XIAO-BO, HOU YAN-BING, SONG FENG, WANG HONG, ZHANG GUANG-YIN. BLUE UPCONVERSION EMISSION IN Yb,Tm-DOPEDPENTAPHOSPHATE GLASSES. Acta Physica Sinica, 1997, 46(6): 1206-1211. doi: 10.7498/aps.46.1206
Metrics
  • Abstract views:  1150
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  19 July 2023
  • Accepted Date:  13 August 2023
  • Available Online:  12 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回