搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nd:YAG陶瓷与单晶4F3/2–4I13/2跃迁的弱谱线多波长激光性能对比

林悠优 李江涛 朱海永 廖小青 段延敏 章健 唐定远

引用本文:
Citation:

Nd:YAG陶瓷与单晶4F3/2–4I13/2跃迁的弱谱线多波长激光性能对比

林悠优, 李江涛, 朱海永, 廖小青, 段延敏, 章健, 唐定远

Multiple weak-line laser operation from Nd:YAG 4F3/2-4I13/2 translation in ceramic and crystal

Lin You-You, Li Jiang-Tao, Zhu Hai-Yong, Liao Xiao-Qing, Duan Yan-Min, Zhang Jian, Tang Ding-Yuan
PDF
导出引用
  • 报道了基于半导体激光端面抽运Nd:YAG的4F3/2–4I13/2 跃迁的弱谱线多波长激光输出. 实验对比了透明陶瓷与单晶材料的激光输出特性, 表明透明陶瓷和单晶材料荧光谱强度的略微差异, 导致了多波长输出时相同两个波长之间的激光强度比在两种材料中的差异. 基于两种耦合输出镜片, 激光阈值都在2 W左右. 在13.5 W的抽运功率下, 基于Nd:YAG透明陶瓷获得了输出功率4.05 W、强度比1 :2的1338与1356 nm双波长激光和输出功率3.65 W、强度比13 : 1的1356与1414 nm 双波长激光, 斜率效率分别达33.9% 和31.9%.
    Laser diode end-pumped Nd:YAG based multiple weak-lines laser from 4F3/2-4I13/2 translation is reported. Fluorescence spectra for both Nd:YAG crystal and ceramic are present. Simple two-mirror cavity with reasonable optical coating is used for multiple weak-line laser operation around 1.3 and 1.4 μm. The variations of laser output and spectra with the pump power are compared experimentally between 1.0 at.% Nd3+ doped Nd:YAG ceramic with 3 mm×3 mm×7.5 mm in size and 0.8 at.% Nd3+-doped Nd:YAG crystal with 3 mm×3 mm×8 mm in size. First, 1338 and 1356 nm dual-wavelength laser outputs are achieved using output coupler with transmittance values of 9.6%, 6.2%, 2.4% and 1.8% at 1338, 1356, 1414 and 1444 nm, respectively. Under low pump power around the threshold, the 1356 nm single wavelength laser is obtained. With increasing the pump power, the laser with a wavelength of 1338 nm appears first in the ceramic. At an incident pump power of 11.8 W, a 1338 and 1356 nm dual-wavelength laser with an output power of 3.7 W and an intensity ratio of 1 : 5 for crystal, and a 1338 and 1356 nm dual-wavelength laser with an output power of 3.5 W and an intensity ratio of 1:3 for ceramic are obtained. Replacing the output couplers with transmittance values of 15.4%, 6.5%, 1.1% and 0.8% at wavelengths of 1338, 1356, 1414 and 1444 nm, respectively, 1356 and 1414 nm dual-wavelength laser outputs are achieved. Under the low pump power, even triple-wavelength (1356, 1414 and 1444 nm) laser is obtained. With increasing the pump power, the intensities of 1414 and 1444 nm wavelengths turned down and the 1444 nm wavelength disappears first in ceramic. At an incident pump power of 11.8 W, a 1356 and 1414 nm dual-wavelength output power of 3.56 W with intensity ratio of 44 : 1 for crystal and a 1356 and 1414 nm dual-wavelength laser output power of 3.25 W with intensity ratio of 12 : 1 for ceramic are obtained. The results show that slight difference between fluorescence spectra results from the difference in laser spectrum between transparent ceramic and single crystal materials for multi-wavelength output. Thresholds of two different output couplers are both about 2 W. When the incident pump power increases to 13.5 W, a 1338 and 1356 nm dual-wavelength laser output power of 4.05 W and a 1356 and 1414 nm dual-wavelength laser output power of 3.65 W are achieved in Nd:YAG transparent ceramic. The corresponding slope efficiency values are 33.9% and 31.9%, respectively.
    • 基金项目: 浙江省公益技术应用研究计划(批准号: 2015C34017)、国家自然科学基金 (批准号: 61505147)、温州市公益性科技计划(批准号: G20140057)、浙江省新苗计划、温州大学实验室开放项目基金和江苏省先进激光材料与器件重点实验室开放课题基金资助的课题.
    • Funds: Project supported by Public Welfare Projects of Zhejiang Province, China (Grant No. 2015C34017), the National Natural Science Foundation of China (Grant No. 61505147), the Public Welfare Projects of Wenzhou City, China (Grant No. G20140057), the Research Funds of College Student Innovation of Zhejiang Province, China, the Laboratory Open Project of Wenzhou University, China, and the Research Fund of the Key Laboratory for Advanced Laser Materials and Devices of Jiangsu Province, China.
    [1]

    Koechner W (translated by Sun W, Jiang Z W, Cheng G X) 2002 Solid-State Laser Engineering (Beijing: Science Press) p45 (in Chinese) [克希耐尔W 著 (孙文, 江泽文, 程国祥 译) 2002 固体激光工程(北京: 科学出版社)第45页]

    [2]

    Rolle A, Pereszlenyi A, Koch R, Richard M, Baier B 2006 J. Thorac. Cardiovasc. Surg. 131 1236

    [3]

    Fan P Z 2000 Laser 37 1 (in Chinese) [范品忠 2000 激光与光电子学进展 37 1]

    [4]

    Whitley T J 1995 J. Lightwave Technol. 13 1744

    [5]

    Zhang G, Zhu H Y, Huang C H, Chen J, Wei Y, Huang L X 2009 Opt. Lett. 34 1495

    [6]

    Li P, Chen X H, Wang Q P, Zhang X Y 2010 Acta Opt. Sin. 30 2963 (in Chinese) [李平, 陈晓寒, 王青圃, 张行愚2010 光学学报 30 2963]

    [7]

    Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Li A H, Chen Z Q 2008 Appl. Phys. B 90 451

    [8]

    Singh S, Smith R G, van Vitert L G 1974 Phys. Rev. B 10 2566

    [9]

    Fan Y X, Hou Y E, Liu Y, Xu Q, Wang H T, He J L 2007 Appl. Phys. B 86 443

    [10]

    Li C L, Zhang X H, Liang W, Jin G Y 2011 Laser Phys. 21 1017

    [11]

    Chen J Y, Duan Y M, Pan X G, Feng Z R, Zhu H Y 2013 Chin. J. Lasers 40 0602020 (in Chinese) [陈久益, 段延敏, 潘小歌, 凤正荣, 朱海永2013 中国激光 40 0602020]

    [12]

    Ye Y L, Zhu H Y, Duan Y M, Shao Z H, Luo D W, Zhang J, Tang D Y, Kaminskii A A 2015 Opt. Mater. Express 5 611

    [13]

    Lan R J, Yang G, Wang Z P 2015 Chin. Phys. B 24 064210

    [14]

    Pan X G, Zhu H Y, Duan Y M, Chen J Y, Zhang Y J, Zhang J, Tang D Y 2013 J. Russ. Laser Res. 34 458

    [15]

    Li W, Chen C S, Wei J X, Han T, Liu S H 2014 Acta Phys. Sin. 63 087801 (in Chinese) [李威, 陈长水, 韦俊雄, 韩田, 刘颂豪 2014 物理学报 63 087801]

    [16]

    Zhan M J, Zhou Y W, Lin Q F, Wang Z H, Han H N, L L, Wei Z Y, Zhang J, Tang D Y 2014 Acta Phys. Sin. 63 014205 (in Chinese) [詹敏杰, 邹育婉, 林清峰, 王兆华, 韩海年, 吕亮, 魏志义, 章建, 唐定远 2014 物理学报 63 014205]

    [17]

    Duan Y M, Zhu H Y, Xu C W, Yang H, Luo D W, Lin H, Zhang J, Tang D Y 2013 Appl. Phys. Express 6 012701

    [18]

    Zhu H Y, Duan Y M, Xu C W, Yang H, Luo D W, Lin H, Zhang J, Tang D Y 2013 Appl. Phys. Express 6 022705

  • [1]

    Koechner W (translated by Sun W, Jiang Z W, Cheng G X) 2002 Solid-State Laser Engineering (Beijing: Science Press) p45 (in Chinese) [克希耐尔W 著 (孙文, 江泽文, 程国祥 译) 2002 固体激光工程(北京: 科学出版社)第45页]

    [2]

    Rolle A, Pereszlenyi A, Koch R, Richard M, Baier B 2006 J. Thorac. Cardiovasc. Surg. 131 1236

    [3]

    Fan P Z 2000 Laser 37 1 (in Chinese) [范品忠 2000 激光与光电子学进展 37 1]

    [4]

    Whitley T J 1995 J. Lightwave Technol. 13 1744

    [5]

    Zhang G, Zhu H Y, Huang C H, Chen J, Wei Y, Huang L X 2009 Opt. Lett. 34 1495

    [6]

    Li P, Chen X H, Wang Q P, Zhang X Y 2010 Acta Opt. Sin. 30 2963 (in Chinese) [李平, 陈晓寒, 王青圃, 张行愚2010 光学学报 30 2963]

    [7]

    Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Li A H, Chen Z Q 2008 Appl. Phys. B 90 451

    [8]

    Singh S, Smith R G, van Vitert L G 1974 Phys. Rev. B 10 2566

    [9]

    Fan Y X, Hou Y E, Liu Y, Xu Q, Wang H T, He J L 2007 Appl. Phys. B 86 443

    [10]

    Li C L, Zhang X H, Liang W, Jin G Y 2011 Laser Phys. 21 1017

    [11]

    Chen J Y, Duan Y M, Pan X G, Feng Z R, Zhu H Y 2013 Chin. J. Lasers 40 0602020 (in Chinese) [陈久益, 段延敏, 潘小歌, 凤正荣, 朱海永2013 中国激光 40 0602020]

    [12]

    Ye Y L, Zhu H Y, Duan Y M, Shao Z H, Luo D W, Zhang J, Tang D Y, Kaminskii A A 2015 Opt. Mater. Express 5 611

    [13]

    Lan R J, Yang G, Wang Z P 2015 Chin. Phys. B 24 064210

    [14]

    Pan X G, Zhu H Y, Duan Y M, Chen J Y, Zhang Y J, Zhang J, Tang D Y 2013 J. Russ. Laser Res. 34 458

    [15]

    Li W, Chen C S, Wei J X, Han T, Liu S H 2014 Acta Phys. Sin. 63 087801 (in Chinese) [李威, 陈长水, 韦俊雄, 韩田, 刘颂豪 2014 物理学报 63 087801]

    [16]

    Zhan M J, Zhou Y W, Lin Q F, Wang Z H, Han H N, L L, Wei Z Y, Zhang J, Tang D Y 2014 Acta Phys. Sin. 63 014205 (in Chinese) [詹敏杰, 邹育婉, 林清峰, 王兆华, 韩海年, 吕亮, 魏志义, 章建, 唐定远 2014 物理学报 63 014205]

    [17]

    Duan Y M, Zhu H Y, Xu C W, Yang H, Luo D W, Lin H, Zhang J, Tang D Y 2013 Appl. Phys. Express 6 012701

    [18]

    Zhu H Y, Duan Y M, Xu C W, Yang H, Luo D W, Lin H, Zhang J, Tang D Y 2013 Appl. Phys. Express 6 022705

  • [1] 贾朝阳, 杨雪, 王志刚, 柴瑞鹏, 庞庆, 张翔宇, 高当丽. Pr3+共掺杂调控的Li0.9K0.1NbO3:Er3+荧光粉上/下转换双模式光学测温研究. 物理学报, 2023, 72(24): 243301. doi: 10.7498/aps.72.20231170
    [2] 刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏. 多效应铌酸钾钠基透明铁电陶瓷的制备及性能. 物理学报, 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
    [3] 潘安, 张晓菲, 王彬, 赵青, 史祎诗. 厚样品三维叠层衍射成像的实验研究. 物理学报, 2016, 65(1): 014204. doi: 10.7498/aps.65.014204
    [4] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [5] 薛明晰, 陈志斌, 王伟明, 欧阳慧泉, 刘先红, 宋岩, 张超, 肖文健, 侯章亚. 多波长红外激光二极管峰值光谱热漂移研究. 物理学报, 2014, 63(15): 154206. doi: 10.7498/aps.63.154206
    [6] 岳孝林, 王金东, 魏正军, 郭邦红, 刘颂豪. 一种新的单光源多波长双向量子密钥分发系统. 物理学报, 2012, 61(18): 184215. doi: 10.7498/aps.61.184215
    [7] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成. 物理学报, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [8] 张婧, 潘炜, 闫连山, 罗斌. 基于光纤自相位调制多波长全光再生的色散管理优化. 物理学报, 2010, 59(10): 7002-7007. doi: 10.7498/aps.59.7002
    [9] 张斌, 张浩佳, 杨秋红, 陆神洲. α-Al2O3透明陶瓷的发光及热释光特性. 物理学报, 2010, 59(2): 1333-1337. doi: 10.7498/aps.59.1333
    [10] 兰瑞君, 刘宏, 王正平, 任诠, 张怀金, 王继扬, 于浩海, 吕耀辉, 桑元华, 许心光. LD抽运的Nd:YAG陶瓷/KTP绿光激光器. 物理学报, 2009, 58(11): 7686-7689. doi: 10.7498/aps.58.7686
    [11] 黄同德, 姜本学, 吴玉松, 李江, 石云, 刘文斌, 潘裕柏, 黄利萍, 郭景坤. Yb3+,Er3+:YAG透明陶瓷的制备和1.5 μm波段光谱性能研究. 物理学报, 2009, 58(2): 1298-1304. doi: 10.7498/aps.58.1298
    [12] 杨新波, 石云, 李红军, 毕群玉, 苏良碧, 刘茜, 潘裕柏, 徐军. Ce:YAG晶体和透明陶瓷的光学和闪烁性能. 物理学报, 2009, 58(11): 8050-8054. doi: 10.7498/aps.58.8050
    [13] 漆云凤, 楼祺洪, 朱洪涛, 周 军, 董景星, 魏运荣, 何 兵. Yb:Y2O3透明陶瓷的光学性能研究. 物理学报, 2007, 56(5): 2657-2662. doi: 10.7498/aps.56.2657
    [14] 杨秋红, 徐 军, 豆传国, 张红伟, 丁 君, 唐在峰. La2O3对Yb:Y2O3透明陶瓷光谱性能的影响. 物理学报, 2007, 56(7): 3961-3965. doi: 10.7498/aps.56.3961
    [15] 丁 君, 杨秋红, 唐在峰, 徐 军, 苏良碧. Er3+/Yb3+共掺的氧化镧钇透明陶瓷的光谱性能研究. 物理学报, 2007, 56(4): 2207-2211. doi: 10.7498/aps.56.2207
    [16] 菅冀祁, 马 骋, 贾惠波. 光致变色双波长光存储读出信号串扰建模与消减. 物理学报, 2005, 54(8): 3604-3609. doi: 10.7498/aps.54.3604
    [17] 曾智江, 杨秋红, 徐 军. Cr3+:Al2O3透明多晶陶瓷光谱特性分析. 物理学报, 2005, 54(11): 5445-5449. doi: 10.7498/aps.54.5445
    [18] 齐国生, 肖家曦, 刘嵘, 蒋培军, 佘鹏, 徐端颐. 光致变色二芳基乙烯多波长光存储研究. 物理学报, 2004, 53(4): 1076-1080. doi: 10.7498/aps.53.1076
    [19] 黄莉蕾. 敏化离子Ce3+对Er3+∶YAG的1.6μm波长激光性能的影响. 物理学报, 1999, 48(1): 65-68. doi: 10.7498/aps.48.65
    [20] 黄莉蕾, 洪 治. Er∶YAG晶体1.6μm波长激光输出特性理论分析. 物理学报, 1998, 47(9): 1504-1508. doi: 10.7498/aps.47.1504
计量
  • 文章访问数:  4958
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-19
  • 修回日期:  2015-06-02
  • 刊出日期:  2015-10-05

/

返回文章
返回