Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Significant role of thermal effects in current-induced exchange bias field switching at antiferromagnet/ferromagnet interface

He Yu Chen Wei-Bin Hong Bin Huang Wen-Tao Zhang Kun Chen Lei Feng Xue-Qiang Li Bo Liu Guo Sun Xiao-Han Zhao Meng Zhang Yue

Citation:

Significant role of thermal effects in current-induced exchange bias field switching at antiferromagnet/ferromagnet interface

He Yu, Chen Wei-Bin, Hong Bin, Huang Wen-Tao, Zhang Kun, Chen Lei, Feng Xue-Qiang, Li Bo, Liu Guo, Sun Xiao-Han, Zhao Meng, Zhang Yue
PDF
HTML
Get Citation
  • The current-induced switching of in-plane exchange bias field (Heb) has many advantages, such as switching without assistance of external magnetic field, excellent immunity to magnetic field, and robust magnetic anisotropy. However, the blocking temperature of the nanoscale antiferromagnet/ferromagnet (AFM/FM) heterostructure is relatively low and susceptible to thermal effects. Therefore, the Joule heating theoretically plays a substantial role in the switching of Heb driven by current, but its underlying mechanism requires further investigation and verification. We prepare a series of Pt/IrMn/Py heterostructures with varying antiferromagnet IrMn thicknesses and systematically investigate the role of thermal effects in current-driven Heb switching. These results demonstrate that under millisecond-level current pulses, Joule heating heats the device above the blocking temperature, leading to the decoupling of exchange coupling at AFM/FM interface. Simultaneously, the Oersted field and spin-orbit torque field generated by the current switch the ferromagnetic moments, and then a new Heb will be induced along the direction of the ferromagnetic moments in the cooling process. Furthermore,in the switching process of Heb, the anisotropic magnetoresistance curve of the AFM/FM heterostructure exhibits a temperature-dependent two-step magnetization reversal phenomenon. Theoretical analysis indicates that this phenomenon arises from the competitive relationship between exchange bias coupling at AFM/FM interface and direct exchange coupling between the ferromagnetic moments. The findings of this study elucidate the crucial role of thermal effects in the current-driven switching of Heb, thereby contributing to the advancement of spintronic devices based on electrically controlled Heb.
      Corresponding author: Zhang Kun, zhang_kun@buaa.edu.cn ; Zhang Yue, yz@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62122008, 61971024, 51901008).
    [1]

    Cai W, Huang Y, Zhang X, Wang S, Pan Y, Yin J, Shi K, Zhao W 2023 Sci. China Phys. Mech. 66 117503Google Scholar

    [2]

    Jinnai B, Watanabe K, Fukami S, Ohno H 2020 Appl. Phys. Lett. 116 160501Google Scholar

    [3]

    Lin P H, Yang B Y, Tsai M H, Chen P C, Huang K F, Lin H H, Lai C H 2019 Nat. Mater. 18 335Google Scholar

    [4]

    Liu X H, Edmonds K W, Zhou Z P, Wang K Y 2020 Phys. Rev. Appl. 13 014059Google Scholar

    [5]

    Yun J, Bai Q, Yan Z, Chang M, Mao J, Zuo Y, Yang D, Xi L, Xue D 2020 Adv. Funct. Mat. 30 1909092Google Scholar

    [6]

    Zhang E Z, Deng Y C, Liu X H, Zhan X Z, Zhu T, Wang K Y 2021 Phys. Rev. B 104 134408Google Scholar

    [7]

    Peng S, Zhu D, Li W, Wu H, Grutter A J, Gilbert D A, Lu J, Xiong D, Cai W, Shafer P, Wang K L, Zhao W 2020 Nat. Electron. 3 757Google Scholar

    [8]

    Liu R, Zhang Y, Yuan Y, Lu Y, Liu T, Chen J, Wei L, Wu D, You B, Zhang W, Du J 2023 Appl. Phys. Lett. 122 062401Google Scholar

    [9]

    Fang B, Sánchez-Tejerina San José L, Chen A, Li Y, Zheng D, Ma Y, Algaidi H, Liu K, Finocchio G, Zhang X 2022 Adv. Funct. Mater. 32 2112406Google Scholar

    [10]

    Xie X, Zhao X, Dong Y, Qu X, Zheng K, Han X, Han X, Fan Y, Bai L, Chen Y, Dai Y, Tian Y, Yan S 2021 Nat. Commun. 12 2473Google Scholar

    [11]

    Huang Q, Guan C, Fan Y, Zhao X, Han X, Dong Y, Xie X, Zhou T, Bai L, Peng Y, Tian Y, Yan S 2022 ACS Nano 16 12462Google Scholar

    [12]

    Zhang K, Chen L, Zhang Y, Hong B, He Y, Lin K, Zhang Z, Zheng Z, Feng X, Zhang Y, Otani Y, Zhao W 2022 Appl. Phys. Rev. 9 011407Google Scholar

    [13]

    Zheng Z Y, Zhang Y, Feng X Q, Zhang K, Nan J, Zhang Z Z, Wang G D, Wang J K, Lei N, Liu D J, Zhang Y G, Zhao W S 2019 Phys. Rev. Appl. 12 044032Google Scholar

    [14]

    Wang M, Cai W, Zhu D, Wang Z, Kan J, Zhao Z, Cao K, Wang Z, Zhang Y, Zhang T, Park C, Wang J P, Fert A, Zhao W 2018 Nat. Electron. 1 582Google Scholar

    [15]

    Ryu J, Thompson R, Park J Y, Kim S J, Choi G, Kang J, Jeong H B, Kohda M, Yuk J M, Nitta J, Lee K J, Park B G 2022 Nat. Electron. 5 217Google Scholar

    [16]

    Zhu D Q, Guo Z X, Du A, Xiong D R, Xiao R, Cai W L, Shi K W, Peng S Z, Cao K H, Lu S Y, Zhu D P, Wang G F, Liu H X, Leng Q W, Zhao W S 2021 IEEE International Electron Devices Meeting (IEDM) San Francisco, America, December 11–15, 2021, p17.5.1

    [17]

    Du A, Zhu D, Cao K, Zhang Z, Guo Z, Shi K, Xiong D, Xiao R, Cai W, Yin J, Lu S, Zhang C, Zhang Y, Luo S, Fert A, Zhao W 2023 Nat. Electron. 6 425Google Scholar

    [18]

    Zheng Z, Zhang Z, Feng X, Zhang K, Zhang Y, He Y, Chen L, Lin K, Zhang Y, Khalili Amiri P, Zhao W 2022 ACS Nano 16 8264Google Scholar

    [19]

    Li D, Yun J, Chen S, Cui B, Guo X, Wu K, Zuo Y, Yang D, Wang J, Xi L 2018 J. Phys. D. Appl. Phys. 51 265003Google Scholar

    [20]

    Lombard L, Gapihan E, Sousa R C, Dahmane Y, Conraux Y, Portemont C, Ducruet C, Papusoi C, Prejbeanu I L, Nozières J P, Dieny B, Schuhl A 2010 J. Appl. Phys. 107 09d728Google Scholar

    [21]

    Prejbeanu I L, Kerekes M, Sousa R C, Sibuet H, Redon O, Dieny B, Nozières J P 2007 J. Phys. Condens. Matter. 19 165218Google Scholar

    [22]

    Rinaldi C, Baldrati L, Di Loreto M, Asa M, Bertacco R, Cantoni M 2018 IEEE Trans. Magn. 54 1Google Scholar

    [23]

    Lee K M, Choi J W, Sok J, Min B-C 2017 AIP Adv. 7 065107Google Scholar

    [24]

    Pajda M, Kudrnovský J, Turek I, Drchal V, Bruno P 2001 Phys. Rev. B 64 174402Google Scholar

    [25]

    Zhao X, Dong Y, Chen W, Xie X, Bai L, Chen Y, Kang S, Yan S, Tian Y 2021 Adv. Funct. Mat. 31 2105359Google Scholar

    [26]

    Fan Y, Han X, Zhao X, Dong Y, Chen Y, Bai L, Yan S, Tian Y 2022 ACS Nano 16 6878Google Scholar

    [27]

    Han X, Fan Y, Wang D, Wang W, Bai L, Chen Y, Yan S, Tian Y 2023 Appl. Phys. Lett. 122 052404Google Scholar

    [28]

    Chen J Y, Thiyagarajah N, Xu H J, Coey J M D 2014 Appl. Phys. Lett. 104 152405Google Scholar

    [29]

    Du Y, Pan G, Moate R, Ohldag H, Kovacs A, Kohn A 2010 Appl. Phys. Lett. 96 222503Google Scholar

    [30]

    Zhang C, Feng X, Zhan Q, Hu Y 2022 Phys. Rev. B 105 174409Google Scholar

    [31]

    Ding S L, Wu R, Fu J B, Wen X, Du H L, Liu S Q, Han J Z, Yang Y C, Wang C S, Zhou D, Yang J B 2015 Appl. Phys. Lett. 107 172404Google Scholar

    [32]

    Oh Y W, Chris Baek S H, Kim Y M, Lee H Y, Lee K D, Yang C G, Park E S, Lee K S, Kim K W, Go G, Jeong J R, Min B C, Lee H W, Lee K J, Park B G 2016 Nat. Nanotechnol. 11 878Google Scholar

    [33]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [34]

    Qiao H, Niu Y, Li X, Mi S, Liu X, Xue J, Wu S, Wang X, Liu Q, Wang J 2022 J. Phys. D. Appl. Phys. 56 025003Google Scholar

  • 图 1  (a) Pt/IrMn/Py/MgO/Ru膜层结构示意图; (b) Pt/IrMn (6 nm)/Py薄膜的面内磁滞回线; (c) 霍尔条器件和测试结构图; Pt/IrMn (6 nm)/Py器件(d) 初始状态和(e)施加不同电流脉冲情况下的AMR曲线; (f) HebIpulse的变化曲线

    Figure 1.  (a) Schematic illustration of the Pt/IrMn/Py/MgO/Ru sample; (b) in-plane magnetic hysteresis loop of Pt/IrMn (6 nm)/Py film; (c) schematic of Hall bar device and electrical transport measurement; AMR curves of the Pt/IrMn (6 nm)/Py device under (d) initial state and (e) after applying a current pulse Ipulse; (f) Heb as a function of Ipulse.

    图 2  Pt/IrMn (3, 4, 6, 8 nm)/Py器件的(a) Heb和(b) TdIpulse的变化; Pt/IrMn (6 nm)/Py器件的(c) Heb和(d) TdTc = 200, 300, 400 K时随Ipulse的变化; (e) 不同IrMn厚度器件的HebTc大小的变化; (f) $T^* $和TbtIrMn大小的变化

    Figure 2.  (a) Heb and (b) Td vary with Ipulse of Pt/IrMn (3, 4, 6, 8 nm)/Py devices; (c) Heb and (d) Td vary with Ipulse for Pt/IrMn (6 nm)/Py device at Tc = 200, 300, 400 K; (e) dependence of Heb on Tc for the Pt/IrMn (3, 4, 6, 8 nm)/Py devices; (f) $T^*$ and Tb as a function of tIrMn.

    图 3  (a) Pt/IrMn (6 nm)/Py器件在不同外磁场Hext下的AMR曲线; (b) 恒定电流脉冲Ipulse = –32 mA或Ipulse = +32 mA下, HebHext大小的变化关系; (c) 施加不同大小电流时Pt/IrMn (3 nm)/Py器件的AMR曲线; (d) Heb翻转时器件的Hc、电流产生的HOe以及改变Heb翻转极性的Hext大小随IrMn厚度的变化关系

    Figure 3.  (a) AMR curves of the Pt/IrMn (6 nm)/Py device under a constant current pulse Ipulse = +32 mA and varying Hext; (b) Heb varies with Hext for the Pt/IrMn (6 nm)/Py device under Ipulse = ±32 mA; (c) AMR curves of the Pt/IrMn (3 nm)/Py device under different Ipulse; (d) HOe, Hc and Hext of the Pt/IrMn (3, 4, 6, 8 nm)/Py devices when Heb switches.

    图 4  (a) 在Tc = 300 K时, Pt/IrMn (4 nm)/Py器件施加电流脉冲Ipulse后测得的AMR曲线以及其(b) 对应的反铁磁和铁磁序状态; (c) 在Tc = 360 K时, Pt/IrMn (4 nm)/Py器件施加电流脉冲Ipulse后测得的AMR曲线; (d) 在Tc = 300 K时, 施加电流脉冲Ipulse = –28 mA后, Pt/IrMn (4 nm)/Py器件在Tc = 300 K和Tc = 360 K时测得的AMR曲线; (e) 在Tc = 360 K时, 施加电流脉冲Ipulse = –23 mA后, Pt/IrMn (4 nm)/Py器件在Tc = 300 K和Tc = 360 K时测得的AMR曲线; Pt/IrMn (4 nm)/Py器件在(f) Tc = 360 K和(g) Tc = 300 K时的反铁磁和铁磁序状态

    Figure 4.  (a) AMR curves and (b) the corresponding antiferromagnetic and ferromagnetic states of the Pt/IrMn (4 nm)/Py device after applying a Ipulse at Tc = 300 K; (c) AMR curves of the Pt/IrMn (4 nm)/Py device after applying a Ipulse at Tc = 360 K; (d) AMR curves of the Pt/IrMn (4 nm)/Py device at Tc=300 K and Tc = 360 K after applying a Ipulse = –28 mA at Tc = 300 K; (e) AMR curves of the Pt/IrMn (4 nm)/Py device at Tc = 300 K and Tc = 360 K after applying a Ipulse = –23 mA at Tc=360 K; Antiferromagnetic and ferromagnetic states of the Pt/IrMn (4 nm)/Py device at (f) Tc = 360 K and (g) Tc = 300 K.

  • [1]

    Cai W, Huang Y, Zhang X, Wang S, Pan Y, Yin J, Shi K, Zhao W 2023 Sci. China Phys. Mech. 66 117503Google Scholar

    [2]

    Jinnai B, Watanabe K, Fukami S, Ohno H 2020 Appl. Phys. Lett. 116 160501Google Scholar

    [3]

    Lin P H, Yang B Y, Tsai M H, Chen P C, Huang K F, Lin H H, Lai C H 2019 Nat. Mater. 18 335Google Scholar

    [4]

    Liu X H, Edmonds K W, Zhou Z P, Wang K Y 2020 Phys. Rev. Appl. 13 014059Google Scholar

    [5]

    Yun J, Bai Q, Yan Z, Chang M, Mao J, Zuo Y, Yang D, Xi L, Xue D 2020 Adv. Funct. Mat. 30 1909092Google Scholar

    [6]

    Zhang E Z, Deng Y C, Liu X H, Zhan X Z, Zhu T, Wang K Y 2021 Phys. Rev. B 104 134408Google Scholar

    [7]

    Peng S, Zhu D, Li W, Wu H, Grutter A J, Gilbert D A, Lu J, Xiong D, Cai W, Shafer P, Wang K L, Zhao W 2020 Nat. Electron. 3 757Google Scholar

    [8]

    Liu R, Zhang Y, Yuan Y, Lu Y, Liu T, Chen J, Wei L, Wu D, You B, Zhang W, Du J 2023 Appl. Phys. Lett. 122 062401Google Scholar

    [9]

    Fang B, Sánchez-Tejerina San José L, Chen A, Li Y, Zheng D, Ma Y, Algaidi H, Liu K, Finocchio G, Zhang X 2022 Adv. Funct. Mater. 32 2112406Google Scholar

    [10]

    Xie X, Zhao X, Dong Y, Qu X, Zheng K, Han X, Han X, Fan Y, Bai L, Chen Y, Dai Y, Tian Y, Yan S 2021 Nat. Commun. 12 2473Google Scholar

    [11]

    Huang Q, Guan C, Fan Y, Zhao X, Han X, Dong Y, Xie X, Zhou T, Bai L, Peng Y, Tian Y, Yan S 2022 ACS Nano 16 12462Google Scholar

    [12]

    Zhang K, Chen L, Zhang Y, Hong B, He Y, Lin K, Zhang Z, Zheng Z, Feng X, Zhang Y, Otani Y, Zhao W 2022 Appl. Phys. Rev. 9 011407Google Scholar

    [13]

    Zheng Z Y, Zhang Y, Feng X Q, Zhang K, Nan J, Zhang Z Z, Wang G D, Wang J K, Lei N, Liu D J, Zhang Y G, Zhao W S 2019 Phys. Rev. Appl. 12 044032Google Scholar

    [14]

    Wang M, Cai W, Zhu D, Wang Z, Kan J, Zhao Z, Cao K, Wang Z, Zhang Y, Zhang T, Park C, Wang J P, Fert A, Zhao W 2018 Nat. Electron. 1 582Google Scholar

    [15]

    Ryu J, Thompson R, Park J Y, Kim S J, Choi G, Kang J, Jeong H B, Kohda M, Yuk J M, Nitta J, Lee K J, Park B G 2022 Nat. Electron. 5 217Google Scholar

    [16]

    Zhu D Q, Guo Z X, Du A, Xiong D R, Xiao R, Cai W L, Shi K W, Peng S Z, Cao K H, Lu S Y, Zhu D P, Wang G F, Liu H X, Leng Q W, Zhao W S 2021 IEEE International Electron Devices Meeting (IEDM) San Francisco, America, December 11–15, 2021, p17.5.1

    [17]

    Du A, Zhu D, Cao K, Zhang Z, Guo Z, Shi K, Xiong D, Xiao R, Cai W, Yin J, Lu S, Zhang C, Zhang Y, Luo S, Fert A, Zhao W 2023 Nat. Electron. 6 425Google Scholar

    [18]

    Zheng Z, Zhang Z, Feng X, Zhang K, Zhang Y, He Y, Chen L, Lin K, Zhang Y, Khalili Amiri P, Zhao W 2022 ACS Nano 16 8264Google Scholar

    [19]

    Li D, Yun J, Chen S, Cui B, Guo X, Wu K, Zuo Y, Yang D, Wang J, Xi L 2018 J. Phys. D. Appl. Phys. 51 265003Google Scholar

    [20]

    Lombard L, Gapihan E, Sousa R C, Dahmane Y, Conraux Y, Portemont C, Ducruet C, Papusoi C, Prejbeanu I L, Nozières J P, Dieny B, Schuhl A 2010 J. Appl. Phys. 107 09d728Google Scholar

    [21]

    Prejbeanu I L, Kerekes M, Sousa R C, Sibuet H, Redon O, Dieny B, Nozières J P 2007 J. Phys. Condens. Matter. 19 165218Google Scholar

    [22]

    Rinaldi C, Baldrati L, Di Loreto M, Asa M, Bertacco R, Cantoni M 2018 IEEE Trans. Magn. 54 1Google Scholar

    [23]

    Lee K M, Choi J W, Sok J, Min B-C 2017 AIP Adv. 7 065107Google Scholar

    [24]

    Pajda M, Kudrnovský J, Turek I, Drchal V, Bruno P 2001 Phys. Rev. B 64 174402Google Scholar

    [25]

    Zhao X, Dong Y, Chen W, Xie X, Bai L, Chen Y, Kang S, Yan S, Tian Y 2021 Adv. Funct. Mat. 31 2105359Google Scholar

    [26]

    Fan Y, Han X, Zhao X, Dong Y, Chen Y, Bai L, Yan S, Tian Y 2022 ACS Nano 16 6878Google Scholar

    [27]

    Han X, Fan Y, Wang D, Wang W, Bai L, Chen Y, Yan S, Tian Y 2023 Appl. Phys. Lett. 122 052404Google Scholar

    [28]

    Chen J Y, Thiyagarajah N, Xu H J, Coey J M D 2014 Appl. Phys. Lett. 104 152405Google Scholar

    [29]

    Du Y, Pan G, Moate R, Ohldag H, Kovacs A, Kohn A 2010 Appl. Phys. Lett. 96 222503Google Scholar

    [30]

    Zhang C, Feng X, Zhan Q, Hu Y 2022 Phys. Rev. B 105 174409Google Scholar

    [31]

    Ding S L, Wu R, Fu J B, Wen X, Du H L, Liu S Q, Han J Z, Yang Y C, Wang C S, Zhou D, Yang J B 2015 Appl. Phys. Lett. 107 172404Google Scholar

    [32]

    Oh Y W, Chris Baek S H, Kim Y M, Lee H Y, Lee K D, Yang C G, Park E S, Lee K S, Kim K W, Go G, Jeong J R, Min B C, Lee H W, Lee K J, Park B G 2016 Nat. Nanotechnol. 11 878Google Scholar

    [33]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [34]

    Qiao H, Niu Y, Li X, Mi S, Liu X, Xue J, Wu S, Wang X, Liu Q, Wang J 2022 J. Phys. D. Appl. Phys. 56 025003Google Scholar

  • [1] Wei Lu-Jun, Li Yang-Hui, Pu Yong. Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2. Acta Physica Sinica, 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [2] Zhang Mei-Mei, Wu Yi-Yun, Yu Jie, Tu Juan, Zhang Dong. Effect of pulse duty ratio on temperature rise induced by focused ultrasound combined with magnetic microbubbles. Acta Physica Sinica, 2023, 72(8): 084301. doi: 10.7498/aps.72.20230068
    [3] Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque. Acta Physica Sinica, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [4] Biological effects of terahertz waves. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211996
    [5] Peng Xiao-Yu, Zhou Huan. Biological effects of terahertz waves. Acta Physica Sinica, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [6] Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei. Stability analysis in three-terminal magnetic tunnel junction. Acta Physica Sinica, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [7] Chen Gui-Bo, Zhang Jia-Jia, Wang Chao-Qun, Bi Juan. A parameter inversion method of film based on thermal effects induced by laser irradiation. Acta Physica Sinica, 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [8] Zhou Ying, Dai Yu, Yao Shu-Na, Liu Jun, Chen Jia-Bin, Chen Shu-Fen, Xin Jian-Guo. Three-dimensional thermal effects of the diode-pumped Nd:YVO4 slab. Acta Physica Sinica, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [9] Zhu Jin-Rong, Xiang Mei, Hu Jing-Guo. Dynamic behaviors of domain wall in FM/AFM bilayers. Acta Physica Sinica, 2012, 61(18): 187504. doi: 10.7498/aps.61.187504
    [10] Liu Quan-Xi, Zhong Ming. Analysis on thermal effect of laser-diode array end-pumped composite rod laser by finite element method. Acta Physica Sinica, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [11] Song Xiao-Lu, Guo Zhen, Li Bing-Bin, Wang Shi-Yu, Cai De-Fang, Wen Jian-Guo. Time-varying thermal effect of laser crystal in pulsed diode laser side-pumped Nd∶YAG laser. Acta Physica Sinica, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [12] Dong Hao, Ren Min, Zhang Lei, Deng Ning, Chen Pei-Yi. Thermal effect in current induced magnetic switching. Acta Physica Sinica, 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [13] Wang Li-Shi, Pan Chun-Xu, Cai Qi-Zhou, Wei Bo-Kang. Study of the heat effect of single steady-state microdischarge during plasma electrolytic oxidation. Acta Physica Sinica, 2007, 56(9): 5341-5346. doi: 10.7498/aps.56.5341
    [14] Wu Jian. Analytical thermal model and characterization of lateral thermal effects in AlInGaAs vertical-cavity top-emitting lasers. Acta Physica Sinica, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [15] Li Yan, Chen Qing-Yong, Jiang Hong-Wei, Wang Ai-Ling, Zheng Wu. The formation and thermal stability of exchange bias in NiFe/PtMn bilayers. Acta Physica Sinica, 2006, 55(12): 6647-6650. doi: 10.7498/aps.55.6647
    [16] Li Yan, Chen Qing-Yong, Jiang Hong-Wei. The influence of (Ni0.81Fe0.19)1-xCrx seed layer on the exchange bias of NiFe/PtMn bilayers. Acta Physica Sinica, 2006, 55(5): 2543-2547. doi: 10.7498/aps.55.2543
    [17] Jiang Hong-Wei, Li Ming-Hua, Wang Ai-Ling, Zheng Wu. Exchange coupling in FeMn/NiFe bilayers. Acta Physica Sinica, 2004, 53(4): 1232-1235. doi: 10.7498/aps.53.1232
    [18] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [19] Dai Bo, Cai Jian-Wang, Lai Wu-Yan. The dependence of exchange bias of Ni81Fe19/Ni100-xMnx bilayers on the Mn content and the thickness of Ni100-xMnx. Acta Physica Sinica, 2003, 52(2): 478-482. doi: 10.7498/aps.52.478
    [20] LI MING-HUA, YU GUANG-HUA, JIANG HONG-WEI, CAI JIAN-WANG, ZHU FENG-WU. EFFECT OF Ta AND Ta/Cu BUFFERS ON THE EXCHANGE BIAS FIELD OFNiFe/FeMn BILAYERS. Acta Physica Sinica, 2001, 50(11): 2230-2234. doi: 10.7498/aps.50.2230
Metrics
  • Abstract views:  1334
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2023
  • Accepted Date:  27 September 2023
  • Available Online:  09 October 2023
  • Published Online:  20 January 2024

/

返回文章
返回