搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于外尔半金属WTe2的自旋-轨道矩驱动磁矩翻转

魏陆军 李阳辉 普勇

引用本文:
Citation:

基于外尔半金属WTe2的自旋-轨道矩驱动磁矩翻转

魏陆军, 李阳辉, 普勇

Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2

Wei Lu-Jun, Li Yang-Hui, Pu Yong
PDF
HTML
导出引用
  • 外尔半金属WTe2有强自旋轨道耦合且能产生新奇非常规面外极化的自旋流, 是近几年的新兴热点. 同时WTe2还具有高的电荷-自旋转换效率, 能在无外磁场辅助的情况下实现垂直磁矩确定性的翻转, 这对于高密度集成低功耗磁随机存取存储器至关重要. 本文回顾了近几年WTe2与铁磁层组成异质结构中自旋轨道矩研究的最新进展, 包括用不同方法制备的WTe2 (例如机械剥离和化学气相沉积)与铁磁层(例如FeNi和CoFeB等)、二维磁体(例如Fe3GeTe2等)组成异质结的自旋轨道矩探测和磁矩翻转的电调控研究进展. 最后, 对相关研究的发展提出展望.
    The Wely semimetal WTe2 exhibits significant spin-orbit coupling characteristics and can generate unconventional spin current with out-of-plane polarization, which has become a hotspot in recent years. Meanwhile, WTe2 also has high charge-spin conversion efficiency, allowing perpendicular magnetization to be switched deterministically without the assistance of an external magnetic field, which is critical for the high-density integration of low-power magnetic random-access memories. The purpose of this paper is to review the recent advances in the research on spin orbit torque in heterostructures composed of WTe2 and ferromagnetic layers, focusing on progress of research on the detection and magnetization switching in the spin orbit torque of heterojunctions composed of WTe2 prepared by different methods (e.g. mechanical exfoliation and chemical vapor deposition) and ferromagnetic layers such as conventional magnets (e.g, FeNi and CoFeB, etc.) and two-dimensional magnets (e.g. Fe3GeTe2, etc.). Finally, the prospect of related research is discussed.
      通信作者: 普勇, yongpu@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52001169, 61874060, U1932159, 61911530220)和南京邮电大学引进人才科研启动基金(批准号: NY219164, NY217118)资助的课题.
      Corresponding author: Pu Yong, yongpu@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52001169, 61874060, U1932159, 61911530220) and the Introduction Talent Research Launch Fund of Nanjing University of Posts and Telecommunications, China (Grant Nos. NY219164, NY217118).
    [1]

    Baibich M N, Broto J M, Fert A, Nguyen V D F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [2]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828Google Scholar

    [3]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [4]

    Parkin S S, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [5]

    Claude C, Albert F, Frédéric N V D 2007 Nature 6 813Google Scholar

    [6]

    Albert F J, Katine J A, Buhrman R A, Ralph D C 2000 Appl. Phys. Lett. 77 3809Google Scholar

    [7]

    Katine J A, Albert F J A, Buhrman R A 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [8]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater. 11 372Google Scholar

    [9]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [10]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [11]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [12]

    何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 物理学报 70 127501Google Scholar

    He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y, Wang S G 2021 Acta. Phys. Sin. 70 127501Google Scholar

    [13]

    Tang W, Liu H L, Li Z, Pan A L, Zeng Y J 2021 Adv. Sci. 8 2100847Google Scholar

    [14]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [15]

    Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G 2011 Nat. Mater. 10 419Google Scholar

    [16]

    Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov S O 2012 Nat. Mater. 11 1028Google Scholar

    [17]

    Yang S H, Ryu K S, Parkin S 2015 Nat. Nanotechnol. 10 221Google Scholar

    [18]

    Tang W, Zhou Z W, Nie Y Z, Xia Q L, Zeng Z M, Guo G H 2017 Appl. Phys. Lett. 111 172402Google Scholar

    [19]

    Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A, Beach G S D 2016 Nat. Mater. 16 309Google Scholar

    [20]

    Ryu J, Lee S, Lee K J, Park B G 2020 Adv. Mater. 32 1907148Google Scholar

    [21]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [22]

    Fukami S, Zhang C, DuttaGupta S, Kurenkov A, Ohno H 2016 Nat. Mater. 15 535Google Scholar

    [23]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [24]

    Baek S C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G, Lee K J 2018 Nat. Mater. 17 509Google Scholar

    [25]

    Ma Q, Li Y, Gopman D B, Kabanov Y P, Shull R D, Chien C L 2018 Phys. Rev. Lett. 120 117703Google Scholar

    [26]

    Sheng Y, Edmonds K W, Ma X, Zheng H, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [27]

    Bekele Z A, Liu X H, Cao Y, Wang K Y 2020 Adv. Electron. Mater. 7 2000793Google Scholar

    [28]

    Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H, Wang K Y 2020 Adv. Mater. 32 e1907929Google Scholar

    [29]

    Yuan H, Bahramy M S, Morimoto K, Wu S, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N, Iwasa Y 2013 Nat. Phys. 9 563Google Scholar

    [30]

    Jungfleisch M B, Zhang W, Sklenar J, Ding J, Jiang W, Chang H, Fradin F Y, Pearson J E, Ketterson J B, Novosad V, Wu M, Hoffmann A 2016 Phys. Rev. Lett. 116 057601Google Scholar

    [31]

    Deng K, Wan G L, Deng P, Zhang K N, Ding S J, Wang E Y, Yan M Z, Huang H Q, Zhang H Y, Xu Z L, Denlinger J, Fedorov A, Yang H T, Duan W H, Yao H, Wu Y, Fan S S, Zhang H J, Chen X, Zhou S Y 2016 Nat. Phys. 12 1105Google Scholar

    [32]

    MacNeill D, Stiehl G M, Guimarães M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar

    [33]

    Lü W M, Jia Z Y, Wang B C, Lu Y, Luo X, Zhang B S, Zeng Z M, Liu Z Y 2018 ACS Appl. Mater. Interfaces 10 2843Google Scholar

    [34]

    Li Q, Yan J Q, Yang B, Zang Y Y, Zhang J J, He K, Wu M H, Zhao Y F, Mandrus D, Wang J, Xue Q K, Chi L F, Singh D J, Pan M 2016 Phys. Rev. B 94 115419Google Scholar

    [35]

    Johansson A, Henk J, Mertig I 2018 Phys. Rev. B 97 085417Google Scholar

    [36]

    Sun Y, Zhang Y, Felser C, Yan B H 2016 Phys. Rev. Lett. 117 146403Google Scholar

    [37]

    Jiang J, Tang F, Pan X C, Liu H M, Niu X H, Wang Y X, Xu D F, Yang H F, Xie B P, Song F Q, Dudin P, Kim T K, Hoesch M, Das P K, Vobornik I, Wan X G, Feng D L 2015 Phys. Rev. Lett. 115 166601Google Scholar

    [38]

    MacNeill D, Stiehl G M S, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2016 Nat. Phys. 13 300Google Scholar

    [39]

    Kao I H, Muzzio R, Zhang H, Zhu M, Gobbo J, Yuan S, Weber D, Rao R, Li J, Edgar J H, Goldberger J E, Yan J, Mandrus D G, Hwang J, Cheng R, Katoch J, Singh S 2022 Nat. Mater. 21 1029Google Scholar

    [40]

    Ye X G, Zhu P F, Xu W Z, Shang N Z, Liu K H, Liao Z M 2022 Chin. Phys. Lett. 39 037303Google Scholar

    [41]

    Wang L Z, Xiong J L, Cheng B, Dai Y D, Wang F Y, Pan C, Cao T J, Liu X W, Wang P F, Chen M Y, Yan S N, Liu Z L, Xiao J J, Xu X H, Wang Z L, Shi Y G, Cheong S W, Zhang H J, Liang S J, Miao F 2022 Sci. Adv. 8 6833Google Scholar

    [42]

    Wang X R, Wu H, Qiu R Z, Huang X H, Zhang J R, Long J W, Yao Y X, Zhao Y R, Zhu Z F, Wang J Y, Shi S Y, Chang H X, Zhao W S 2023 Cell Rep. Phys. Sci. 4 101468Google Scholar

    [43]

    Xie Q, Lin W, Sarkar S, Shu X, Chen S, Liu L, Zhao T, Zhou C, Wang H, Zhou J, Gradečak S, Chen J 2021 APL Mater. 9 051114Google Scholar

    [44]

    Wei L J, Yin X M, Liu P, Zhang P C, Niu W, Liu P, Yang J J, Peng J C, Huang F, Liu R B, Chen J R, Chen L, Zhou S, Li F, Niu X H, Du J, Pu Y 2023 Appl. Phys. Lett. 123 252404Google Scholar

    [45]

    Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat. Nanotechnol. 14 945Google Scholar

    [46]

    Lü W X, Xue H W, Cai J L, Chen Q, Zhang B S, Zhang Z Z, Zeng Z M 2021 Appl. Phys. Lett. 118 052406Google Scholar

    [47]

    Shi S Y, Li J, Hsu C H, Lee K, Wang Y, Yang L, Wang J Y, Wang Q S, Wu H, Zhang W, Eda G, Liang G C, Chang H, Yang H 2021 Adv. Quantum Technol. 4 2100038Google Scholar

    [48]

    Rhodes D, Das S, Zhang Q R, Zeng B, Pradhan N R, Kikugawa N, Manousakis E, Balicas L 2015 Phys. Rev. B 92 125152Google Scholar

    [49]

    Zhao B, Khokhriakov D, Zhang Y, Fu H, Karpiak B, Hoque A M, Xu X, Jiang Y, Yan B, Dash S P 2020 Phys. Rev. Res. 2 013286Google Scholar

    [50]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [51]

    Brown B E 1966 Acta Cryst. 20 264Google Scholar

    [52]

    Hang X, Talapatra A, Chen X, Luo Z Y, Wu Y H 2021 Appl. Phys. Lett. 118 042401Google Scholar

    [53]

    Peng C W, Liao W B, Chen T Y, Pai C F 2021 ACS Appl. Mater. Interfaces 13 15950Google Scholar

    [54]

    Li X, Li P, Hou V D H, Dc M, Nien C H, Xue F, Yi D, Bi C, Lee C M, Lin S J, Tsai W, Suzuki Y, Wang S X 2021 Matter 4 1639Google Scholar

    [55]

    Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y, Yang H 2017 Nat. Commun. 8 1364Google Scholar

    [56]

    Zhao B, Karpiak B, Khokhriakov D, Johansson A, Hoque A M, Xu X, Jiang Y, Mertig I, Dash S P 2020 Adv. Mater. 32 2000818Google Scholar

    [57]

    Shin I, Cho W J, An E S, Park S, Jeong H, Jang S, Baek W J, Park S Y, Yang D, Seo J H, Kim G, Ali M N, Choi S, Lee H, Kim J S, Kim S D, Lee G H 2022 Adv. Mater. 34 2101730Google Scholar

    [58]

    Tian C K, Pan F H, Xu S, Ai K, Xia T L, Cheng P 2020 Appl. Phys. Lett. 116 202402Google Scholar

    [59]

    Alahmed L, Nepal B, Macy J, Zheng W, Casas B, Sapkota A, Jones N, Mazza A R, Brahlek M, Jin W, Mahjouri-Samani M, Zhang S S L, Mewes C, Balicas L, Mewes T, Li P 2021 2D Mater 8 045030Google Scholar

    [60]

    Zhao B, Ngaloy R, Ghosh S, Ershadrad S, Gupta R, Ali K, Hoque A M, Karpiak B, Khokhriakov D, Polley C, Thiagarajan B, Kalaboukhov A, Svedlindh P, Sanyal B, Dash S P 2023 Adv. Mater. 35 2209113Google Scholar

    [61]

    Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X Q, Du J, He L, Zhang R, Bian G, Xu Y B 2021 Nat. Commun. 12 2492Google Scholar

    [62]

    Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar

    [63]

    Pan H Y, Zhang C S, Shi J Y, Hu X Q, Wang N Z, An L H, Duan R H, Deb P, Liu Z, Gao W B 2023 ACS Mater. Lett. 5 2226Google Scholar

    [64]

    Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y, Xiu F X 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [65]

    Liu Y K, Shi G Y, Kumar D, Kim T, Shi S Y, Yang D S, Zhang J T, Zhang C H, Wang F, Yang S H, Pu Y C, Yu P, Cai K M, Yang H 2023 Nat. Electron. 6 732Google Scholar

    [66]

    Zhang Y, Xu H J, Jia K, Lan G B, Huang Z H, He B, He C L, Shao Q M, Wang Y Z, Zhao M K, Ma T Y, Dong J, Guo C Y, Cheng C, Feng J F, Wan C H, Wei H X, Shi Y G, Zhang G Y, Han X F, Yu G Q 2023 Sci. Adv. 9 eadg9819Google Scholar

  • 图 1  WTe2晶体结构

    Fig. 1.  Crystal structure of WTe2.

    图 2  (a) τS/τBτT/τB分别与WTe2厚度的关系; (b)单层和双层的WTe2/Py器件的二次谐波霍尔电压与外加磁场角度关系, τB的符号反转反映在发现峰值信号的不同角度上[32]

    Fig. 2.  (a) Ratios of the τS/τB and τTB as a function of WTe2 thickness; (b) second-harmonic Hall data for a WTe2/Py device with a monolayer bilayer WTe2, as a function of the angle of the applied magnetic field. The sign reversal of τB is reflected in the different angles at which the peak signals are found[32].

    图 3  (a)电流沿WTe2 a轴诱导磁化翻转特性[42]; (b)在WTe2/Fe3GeTe2异质结中SOT诱导的无场磁化翻转[40]

    Fig. 3.  (a) The current-induced magnetization switching behavior along the a axis of WTe2[42]; (b) SOT-induced field-free switching in WTe2/Fe3GeTe2 bilayers[40].

    表 1  实验研究工作中WTe2晶体的制备方法、铁磁层材料和WTe2/FM异质结的SOT的表征方法、测试温度和自旋霍尔电导率

    Table 1.  Preparation method of WTe2 crystal, FM material, measurement method, experimental temperature and spin Hall conductivity for SOT in WTe2/FM heterostructures.

    制备方法 铁磁层材料 表征方法 测试温度/K 自旋霍尔电导率
    $ / {10^3}~({\hbar /{2{{e}}}}) {(\Omega {\cdot} {\text{m}})^{ - 1}} $
    文献
    Exfoliation Py ST-FMR 300 σS = 8 ± 2
    σA = 9 ± 3
    σB = 3.6 ± 0.8
    [38]
    Py SHH/ST-FMR 300 σS, σT, σA, σB observed [32]
    Py ST-FMR/SHH 300 σS, σA, σB observed [45]
    Fe2.78GeTe2 AHE loop shift 150—190 σB observed [39]
    Fe3GeTe2 Current-driven MS 110—135 σB observed [40]
    Fe3GeTe2 AHE loop shift 120 σB observed [41]
    SrRuO3 AHE loop shift 40 σB observed [43]
    CoTb SHH 300 σS, σT observed [46]
    CVD FeNi ST-FMR 300 σOP = 1.76
    σIP = 7.36
    [47]
    CoFeB AHE loop shift/SHH 300 σOP = 2.05 ± 0.39
    σIP = 3.58 ± 0.12
    [42]
    注: σS, σT, σBσA分别表示面内类阻尼SOT、面内类场SOT、面外类阻尼SOT和面外类场SOT相关的自旋霍尔电导率; σOPσIP分别表示面外和面内自旋霍尔电导率; ST-FMR, SHH, AHE loop shift和Current-driven MS分别表示自旋力矩-铁磁共振、二次谐波测量技术、反常霍尔效应回线偏移和电流驱动的磁化开关测试测试方法; CVD表示化学气相沉积.
    下载: 导出CSV
  • [1]

    Baibich M N, Broto J M, Fert A, Nguyen V D F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [2]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828Google Scholar

    [3]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [4]

    Parkin S S, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [5]

    Claude C, Albert F, Frédéric N V D 2007 Nature 6 813Google Scholar

    [6]

    Albert F J, Katine J A, Buhrman R A, Ralph D C 2000 Appl. Phys. Lett. 77 3809Google Scholar

    [7]

    Katine J A, Albert F J A, Buhrman R A 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [8]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater. 11 372Google Scholar

    [9]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [10]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [11]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [12]

    何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 物理学报 70 127501Google Scholar

    He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y, Wang S G 2021 Acta. Phys. Sin. 70 127501Google Scholar

    [13]

    Tang W, Liu H L, Li Z, Pan A L, Zeng Y J 2021 Adv. Sci. 8 2100847Google Scholar

    [14]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [15]

    Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G 2011 Nat. Mater. 10 419Google Scholar

    [16]

    Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov S O 2012 Nat. Mater. 11 1028Google Scholar

    [17]

    Yang S H, Ryu K S, Parkin S 2015 Nat. Nanotechnol. 10 221Google Scholar

    [18]

    Tang W, Zhou Z W, Nie Y Z, Xia Q L, Zeng Z M, Guo G H 2017 Appl. Phys. Lett. 111 172402Google Scholar

    [19]

    Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A, Beach G S D 2016 Nat. Mater. 16 309Google Scholar

    [20]

    Ryu J, Lee S, Lee K J, Park B G 2020 Adv. Mater. 32 1907148Google Scholar

    [21]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [22]

    Fukami S, Zhang C, DuttaGupta S, Kurenkov A, Ohno H 2016 Nat. Mater. 15 535Google Scholar

    [23]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [24]

    Baek S C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G, Lee K J 2018 Nat. Mater. 17 509Google Scholar

    [25]

    Ma Q, Li Y, Gopman D B, Kabanov Y P, Shull R D, Chien C L 2018 Phys. Rev. Lett. 120 117703Google Scholar

    [26]

    Sheng Y, Edmonds K W, Ma X, Zheng H, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [27]

    Bekele Z A, Liu X H, Cao Y, Wang K Y 2020 Adv. Electron. Mater. 7 2000793Google Scholar

    [28]

    Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H, Wang K Y 2020 Adv. Mater. 32 e1907929Google Scholar

    [29]

    Yuan H, Bahramy M S, Morimoto K, Wu S, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N, Iwasa Y 2013 Nat. Phys. 9 563Google Scholar

    [30]

    Jungfleisch M B, Zhang W, Sklenar J, Ding J, Jiang W, Chang H, Fradin F Y, Pearson J E, Ketterson J B, Novosad V, Wu M, Hoffmann A 2016 Phys. Rev. Lett. 116 057601Google Scholar

    [31]

    Deng K, Wan G L, Deng P, Zhang K N, Ding S J, Wang E Y, Yan M Z, Huang H Q, Zhang H Y, Xu Z L, Denlinger J, Fedorov A, Yang H T, Duan W H, Yao H, Wu Y, Fan S S, Zhang H J, Chen X, Zhou S Y 2016 Nat. Phys. 12 1105Google Scholar

    [32]

    MacNeill D, Stiehl G M, Guimarães M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar

    [33]

    Lü W M, Jia Z Y, Wang B C, Lu Y, Luo X, Zhang B S, Zeng Z M, Liu Z Y 2018 ACS Appl. Mater. Interfaces 10 2843Google Scholar

    [34]

    Li Q, Yan J Q, Yang B, Zang Y Y, Zhang J J, He K, Wu M H, Zhao Y F, Mandrus D, Wang J, Xue Q K, Chi L F, Singh D J, Pan M 2016 Phys. Rev. B 94 115419Google Scholar

    [35]

    Johansson A, Henk J, Mertig I 2018 Phys. Rev. B 97 085417Google Scholar

    [36]

    Sun Y, Zhang Y, Felser C, Yan B H 2016 Phys. Rev. Lett. 117 146403Google Scholar

    [37]

    Jiang J, Tang F, Pan X C, Liu H M, Niu X H, Wang Y X, Xu D F, Yang H F, Xie B P, Song F Q, Dudin P, Kim T K, Hoesch M, Das P K, Vobornik I, Wan X G, Feng D L 2015 Phys. Rev. Lett. 115 166601Google Scholar

    [38]

    MacNeill D, Stiehl G M S, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2016 Nat. Phys. 13 300Google Scholar

    [39]

    Kao I H, Muzzio R, Zhang H, Zhu M, Gobbo J, Yuan S, Weber D, Rao R, Li J, Edgar J H, Goldberger J E, Yan J, Mandrus D G, Hwang J, Cheng R, Katoch J, Singh S 2022 Nat. Mater. 21 1029Google Scholar

    [40]

    Ye X G, Zhu P F, Xu W Z, Shang N Z, Liu K H, Liao Z M 2022 Chin. Phys. Lett. 39 037303Google Scholar

    [41]

    Wang L Z, Xiong J L, Cheng B, Dai Y D, Wang F Y, Pan C, Cao T J, Liu X W, Wang P F, Chen M Y, Yan S N, Liu Z L, Xiao J J, Xu X H, Wang Z L, Shi Y G, Cheong S W, Zhang H J, Liang S J, Miao F 2022 Sci. Adv. 8 6833Google Scholar

    [42]

    Wang X R, Wu H, Qiu R Z, Huang X H, Zhang J R, Long J W, Yao Y X, Zhao Y R, Zhu Z F, Wang J Y, Shi S Y, Chang H X, Zhao W S 2023 Cell Rep. Phys. Sci. 4 101468Google Scholar

    [43]

    Xie Q, Lin W, Sarkar S, Shu X, Chen S, Liu L, Zhao T, Zhou C, Wang H, Zhou J, Gradečak S, Chen J 2021 APL Mater. 9 051114Google Scholar

    [44]

    Wei L J, Yin X M, Liu P, Zhang P C, Niu W, Liu P, Yang J J, Peng J C, Huang F, Liu R B, Chen J R, Chen L, Zhou S, Li F, Niu X H, Du J, Pu Y 2023 Appl. Phys. Lett. 123 252404Google Scholar

    [45]

    Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat. Nanotechnol. 14 945Google Scholar

    [46]

    Lü W X, Xue H W, Cai J L, Chen Q, Zhang B S, Zhang Z Z, Zeng Z M 2021 Appl. Phys. Lett. 118 052406Google Scholar

    [47]

    Shi S Y, Li J, Hsu C H, Lee K, Wang Y, Yang L, Wang J Y, Wang Q S, Wu H, Zhang W, Eda G, Liang G C, Chang H, Yang H 2021 Adv. Quantum Technol. 4 2100038Google Scholar

    [48]

    Rhodes D, Das S, Zhang Q R, Zeng B, Pradhan N R, Kikugawa N, Manousakis E, Balicas L 2015 Phys. Rev. B 92 125152Google Scholar

    [49]

    Zhao B, Khokhriakov D, Zhang Y, Fu H, Karpiak B, Hoque A M, Xu X, Jiang Y, Yan B, Dash S P 2020 Phys. Rev. Res. 2 013286Google Scholar

    [50]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [51]

    Brown B E 1966 Acta Cryst. 20 264Google Scholar

    [52]

    Hang X, Talapatra A, Chen X, Luo Z Y, Wu Y H 2021 Appl. Phys. Lett. 118 042401Google Scholar

    [53]

    Peng C W, Liao W B, Chen T Y, Pai C F 2021 ACS Appl. Mater. Interfaces 13 15950Google Scholar

    [54]

    Li X, Li P, Hou V D H, Dc M, Nien C H, Xue F, Yi D, Bi C, Lee C M, Lin S J, Tsai W, Suzuki Y, Wang S X 2021 Matter 4 1639Google Scholar

    [55]

    Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y, Yang H 2017 Nat. Commun. 8 1364Google Scholar

    [56]

    Zhao B, Karpiak B, Khokhriakov D, Johansson A, Hoque A M, Xu X, Jiang Y, Mertig I, Dash S P 2020 Adv. Mater. 32 2000818Google Scholar

    [57]

    Shin I, Cho W J, An E S, Park S, Jeong H, Jang S, Baek W J, Park S Y, Yang D, Seo J H, Kim G, Ali M N, Choi S, Lee H, Kim J S, Kim S D, Lee G H 2022 Adv. Mater. 34 2101730Google Scholar

    [58]

    Tian C K, Pan F H, Xu S, Ai K, Xia T L, Cheng P 2020 Appl. Phys. Lett. 116 202402Google Scholar

    [59]

    Alahmed L, Nepal B, Macy J, Zheng W, Casas B, Sapkota A, Jones N, Mazza A R, Brahlek M, Jin W, Mahjouri-Samani M, Zhang S S L, Mewes C, Balicas L, Mewes T, Li P 2021 2D Mater 8 045030Google Scholar

    [60]

    Zhao B, Ngaloy R, Ghosh S, Ershadrad S, Gupta R, Ali K, Hoque A M, Karpiak B, Khokhriakov D, Polley C, Thiagarajan B, Kalaboukhov A, Svedlindh P, Sanyal B, Dash S P 2023 Adv. Mater. 35 2209113Google Scholar

    [61]

    Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X Q, Du J, He L, Zhang R, Bian G, Xu Y B 2021 Nat. Commun. 12 2492Google Scholar

    [62]

    Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar

    [63]

    Pan H Y, Zhang C S, Shi J Y, Hu X Q, Wang N Z, An L H, Duan R H, Deb P, Liu Z, Gao W B 2023 ACS Mater. Lett. 5 2226Google Scholar

    [64]

    Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y, Xiu F X 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [65]

    Liu Y K, Shi G Y, Kumar D, Kim T, Shi S Y, Yang D S, Zhang J T, Zhang C H, Wang F, Yang S H, Pu Y C, Yu P, Cai K M, Yang H 2023 Nat. Electron. 6 732Google Scholar

    [66]

    Zhang Y, Xu H J, Jia K, Lan G B, Huang Z H, He B, He C L, Shao Q M, Wang Y Z, Zhao M K, Ma T Y, Dong J, Guo C Y, Cheng C, Feng J F, Wan C H, Wei H X, Shi Y G, Zhang G Y, Han X F, Yu G Q 2023 Sci. Adv. 9 eadg9819Google Scholar

  • [1] 赵珂楠, 李晟, 芦增星, 劳斌, 郑轩, 李润伟, 汪志明. SrRuO3薄膜中自旋轨道力矩效率和磁矩翻转的晶向调控研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240367
    [2] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用. 物理学报, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [3] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控. 物理学报, 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [4] 王可欣, 粟傈, 童良乐. 基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析. 物理学报, 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [5] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转. 物理学报, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [6] 刘娜, 王译, 李文波, 张丽艳, 何世坤, 赵建坤, 赵纪军. 外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究. 物理学报, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [7] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [8] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展. 物理学报, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [9] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展. 物理学报, 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [10] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬. 二维材料WTe2用于气体传感器的性能研究. 物理学报, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [11] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [12] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [13] 王日兴, 叶华, 王丽娟, 敖章洪. 垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动. 物理学报, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [14] 高洁, 张民仓. 包含非中心电耦极矩的环状非谐振子势场赝自旋对称性的三对角化表示. 物理学报, 2016, 65(2): 020301. doi: 10.7498/aps.65.020301
    [15] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [16] 陈东猛, 刘大勇. 双层反铁磁体K3Cu2F7 中轨道序驱动的自旋二聚化. 物理学报, 2010, 59(10): 7350-7356. doi: 10.7498/aps.59.7350
    [17] 李红红, 王 劼, 郭玉献, 王 峰. 利用X射线磁性圆二色吸收谱计算3d过渡族磁性原子的轨道和自旋磁矩. 物理学报, 2006, 55(5): 2633-2638. doi: 10.7498/aps.55.2633
    [18] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析. 物理学报, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [19] 王永久, 唐智明. 质量四极矩场中的轨道进动效应. 物理学报, 2001, 50(12): 2284-2288. doi: 10.7498/aps.50.2284
    [20] 杜懋陆, 谌家军, 陈康生. Ni2+—6X-络合物g因子的双自旋—轨道耦合系数模型. 物理学报, 1992, 41(7): 1174-1181. doi: 10.7498/aps.41.1174
计量
  • 文章访问数:  821
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-21
  • 修回日期:  2024-01-03
  • 上网日期:  2024-01-06
  • 刊出日期:  2024-01-05

/

返回文章
返回