Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel majority carrier accumulation insulated gate bipolar transistor with Schottky junction

Duan Bao-Xing Liu Yu-Lin Tang Chun-Ping Yang Yin-Tang

Citation:

Novel majority carrier accumulation insulated gate bipolar transistor with Schottky junction

Duan Bao-Xing, Liu Yu-Lin, Tang Chun-Ping, Yang Yin-Tang
PDF
HTML
Get Citation
  • Insulated gate bipolar transistor (IGBT) is the core of modern power semiconductor device, and has been widely used due to its excellent electrical characteristics. A novel majority carrier accumulation mode IGBT with Schottky junction contact gate semiconductor layer (AC-SCG IGBT) is proposed and investigated by TCAD simulation in this article. When the AC-SCG IGBT is in the on-state, a forward bias is applied to the gate. Due to the very low forward voltage drop (VF) of the Schottky barrier diode, the potential of the gate semiconductor layer is almost equal to the gate potential, which can accumulate a large number of majority carrier electrons in the drift region. In addition to the electrons existing, these accumulated electrons increase the conductivity of the drift region, thus significantly reducing VF. Therefore, the doping concentration of the drift region is not limited by VF. The lightly doped drift region can make AC-SCG IGBT have a higher breakdown voltage (BV). Moreover, it also reduces the barrier capacitance in the turn-off process, thus the overall Miller capacitance is small, which can quickly turn off and reduce the turn-off time (Toff) and turn-off loss (Eoff). The simulation results indicate that at the BV of 600 V, the VF of 0.84 V for the proposed AC-SCG IGBT is reduced by 46.2% compared with that for the conventional IGBT (VF of 1.56 V). The Eoff of the AC-SCG IGBT (0.77 mJ/cm2) is reduced by 52.5% compared with that for the conventional IGBT (1.62 mJ/cm2), and the Toff (155.8–222.7 ns) is reduced by 30%. The contradiction between VF and Eoff is eliminated. In addition, the proposed AC-SCG IGBT has a better anti-latch-up capability and is coupled with its higher BV, so it has a larger forward biased safe operating area (FBSOA). The proposed novel structure meets the development requirements for future IGBT device performance, and has great significance for guiding the development of the power semiconductor device field.
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    • Funds: Project supported by the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2018JC-017).
    [1]

    Baliga B J 1979 Electron. Lett. 15 645Google Scholar

    [2]

    Baliga B J 1988 IEEE Proc. 76 409Google Scholar

    [3]

    王彩琳 2015 电力半导体新器件及其制造技术 (北京: 机械工业出版社) 第5—7页

    Wang C L 2015 New Power Semiconductor Devices and Their Manufacturing Technologies (Beijing: China Machine Press) pp5–7

    [4]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses) [巴利加BJ著 (韩郑生, 陆江, 宋李梅译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第399—401页]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses)

    [5]

    Chang H R, Baliga B J, Kretchmer J W, Piacente P A 1987 International Electron Devices Meeting ( IEDM) Washington, USA, December 6–9, 1987 p674

    [6]

    Takahashi H, Yamamoto A, Aono S, Minato T 2004 16th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Kitakyushu, Japan, May 24–27, 2004 p133

    [7]

    Takahashi H, Haruguchi E, Hagino H, Yamada T 1996 8th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Maui, USA, May 23, 1996 p349

    [8]

    Antoniou M, Udrea F, Bauer F, Mihaila A, Nistor I 2012 24th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Bruges, Belgium, June 3–7, 2012 p21

    [9]

    Li P, Lü X J, Cheng J J, Chen X B 2016 IEEE Electron. Device Lett. 37 1470Google Scholar

    [10]

    Vaidya M, Naugarhiya A, Verma S, Mishra G P 2022 IEEE Trans. Electron. Devices 69 1604Google Scholar

    [11]

    Xu H, Yang Y F, Tan J J, Zhu H, Sun Q Q, Zhang D W 2022 IEEE Trans. Electron. Devices 69 5450Google Scholar

    [12]

    Li L P, Li Z H, Chen P, Rao Q S, Yang Y Z, Wan J L, Wang T Y, Zhao Y S, Ren M 2022 16th International Conference on Solid-State and Integrated Circuit Technology ( ICSICT) Nanjing, China, October 25–28, 2022 p1

    [13]

    Synopsys Sentaurus TCAD Device User Guide 2017

    [14]

    Duan B X, Xing L T, Wang Y D, Yang Y T 2022 IEEE Trans. Electron. Devices 69 658Google Scholar

    [15]

    Udrea F, Deboy G, Fujihira T 2017 IEEE Trans. Electron. Devices 64 713Google Scholar

    [16]

    Iwamoto S, Takahashi K, Kuribayashi H, Wakimoto S, Mochizuki K, Nakazawa H 2005 17th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Santa Barbara, CA, USA, May 23–26, 2005 p31

    [17]

    Yamauchi S, Shibata T, Nogami S, Yamaoka T, Hattori Y, Yamaguchi H 2006 18th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Naples, Italy, June 4–8, 2006 p1

    [18]

    Duan B X, Wang Y D, Sun L C, Yang Y T 2020 IEEE Trans. Electron. Devices 67 1085Google Scholar

    [19]

    Wang Y D, Duan B X, Song H T, Yang Y T 2020 IEEE Electron. Device Lett. 41 1681Google Scholar

    [20]

    Sun L C, Duan B X, Yang Y T 2021 IEEE J. Electron Devi. 9 409Google Scholar

  • 图 1  两种器件结构示意图 (a)常规IGBT结构; (b) AC-SCG IGBT结构

    Figure 1.  Schematic cross sections of the two devices: (a) Conventional IGBT structure; (b) AC-SCG IGBT structure.

    图 2  AC-SCG IGBT的工艺流程图 (a)外延; (b)深沟槽刻蚀; (c) SiO2生长; (d)外延回填; (e)离子注入; (f)背面减薄和金属化

    Figure 2.  Process flow for AC-SCG IGBT: (a) Epitaxy; (b) deep trench etching; (c) performing SiO2 growth; (d) epitaxial backfilling; (e) ion implantation; (f) back thinning and metallization.

    图 3  正栅极电压下AC-SCG IGBT积累层的截面示意图及栅半导体层的电位分布

    Figure 3.  Schematic cross sections of AC-SCG IGBT accumulation layer and potential distributions of the gate semiconductor layer under the positive gate voltage.

    图 4  两种器件的BV和VFND变化的曲线图 (a)常规IGBT结构; (b) AC-SCG IGBT结构

    Figure 4.  BV and VF as a function of ND of the two devices: (a) Conventional IGBT; (b) AC-SCG IGBT.

    图 5  两种器件在击穿时的垂直电场分布 (a)两种器件沿线AA'的电场分布; (b) AC-SCG IGBT沿线BB'的电场分布

    Figure 5.  Vertical electric field distributions of the two devices at BV: (a) Electric field distributions along the line AA' for the two devices; (b) electric field distribution along the line BB' for AC-SCG IGBT.

    图 6  AC-SCG IGBT栅氧化层两侧的电势分布

    Figure 6.  Potential distribution on both sides of AC-SCG IGBT gate oxide.

    图 7  两种器件在不同VG下的输出特性

    Figure 7.  Variation of output characteristics for the two devices under VG.

    图 8  两种器件在VG = 10 V下的饱和特性

    Figure 8.  Saturation characteristics for the two devices under VG = 10 V.

    图 9  AC-SCG IGBT在不同TOX下的输出特性

    Figure 9.  Variation of output characteristics for the AC-SCG IGBT under TOX.

    图 10  开关电路与关断特性图 (a)带感性负载的IGBT开关电路图; (b)两种器件的关断特性曲线

    Figure 10.  Switching circuit and turn-off characteristics diagram: (a) Switching circuit with inductive load for IGBT; (b) turn-off characteristics for the two devices.

    图 11  两种器件的米勒电容

    Figure 11.  CGC as a function of VCE of the two devices.

    图 12  两种器件VFEoff的折中曲线图

    Figure 12.  Trade-off curves between VF and Eoff for the two devices.

    图 13  两种器件的FBSOA

    Figure 13.  FBSOA of the two devices.

    表 1  常规IGBT和AC-SCG IGBT的关键参数和电学特性值

    Table 1.  Key parameters and electrical characteristic values of the conventional IGBT and AC-SCG IGBT.

    名称参数常规IGBTAC-SCG IGBT
    漂移区长度LD/μm2828
    器件宽度W/μm3.13.1
    氧化层厚度TOX/μm0.10.1
    漂移区掺杂浓度ND/cm–310141012
    Nside区掺杂浓度Nside/cm–31012
    击穿电压BV/V612629
    正向导通压降VF/V1.560.84
    关断时间Toff/ns222.7155.8
    关断损耗Eoff/(mJ·cm–2)1.620.77
    DownLoad: CSV
  • [1]

    Baliga B J 1979 Electron. Lett. 15 645Google Scholar

    [2]

    Baliga B J 1988 IEEE Proc. 76 409Google Scholar

    [3]

    王彩琳 2015 电力半导体新器件及其制造技术 (北京: 机械工业出版社) 第5—7页

    Wang C L 2015 New Power Semiconductor Devices and Their Manufacturing Technologies (Beijing: China Machine Press) pp5–7

    [4]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses) [巴利加BJ著 (韩郑生, 陆江, 宋李梅译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第399—401页]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses)

    [5]

    Chang H R, Baliga B J, Kretchmer J W, Piacente P A 1987 International Electron Devices Meeting ( IEDM) Washington, USA, December 6–9, 1987 p674

    [6]

    Takahashi H, Yamamoto A, Aono S, Minato T 2004 16th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Kitakyushu, Japan, May 24–27, 2004 p133

    [7]

    Takahashi H, Haruguchi E, Hagino H, Yamada T 1996 8th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Maui, USA, May 23, 1996 p349

    [8]

    Antoniou M, Udrea F, Bauer F, Mihaila A, Nistor I 2012 24th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Bruges, Belgium, June 3–7, 2012 p21

    [9]

    Li P, Lü X J, Cheng J J, Chen X B 2016 IEEE Electron. Device Lett. 37 1470Google Scholar

    [10]

    Vaidya M, Naugarhiya A, Verma S, Mishra G P 2022 IEEE Trans. Electron. Devices 69 1604Google Scholar

    [11]

    Xu H, Yang Y F, Tan J J, Zhu H, Sun Q Q, Zhang D W 2022 IEEE Trans. Electron. Devices 69 5450Google Scholar

    [12]

    Li L P, Li Z H, Chen P, Rao Q S, Yang Y Z, Wan J L, Wang T Y, Zhao Y S, Ren M 2022 16th International Conference on Solid-State and Integrated Circuit Technology ( ICSICT) Nanjing, China, October 25–28, 2022 p1

    [13]

    Synopsys Sentaurus TCAD Device User Guide 2017

    [14]

    Duan B X, Xing L T, Wang Y D, Yang Y T 2022 IEEE Trans. Electron. Devices 69 658Google Scholar

    [15]

    Udrea F, Deboy G, Fujihira T 2017 IEEE Trans. Electron. Devices 64 713Google Scholar

    [16]

    Iwamoto S, Takahashi K, Kuribayashi H, Wakimoto S, Mochizuki K, Nakazawa H 2005 17th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Santa Barbara, CA, USA, May 23–26, 2005 p31

    [17]

    Yamauchi S, Shibata T, Nogami S, Yamaoka T, Hattori Y, Yamaguchi H 2006 18th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Naples, Italy, June 4–8, 2006 p1

    [18]

    Duan B X, Wang Y D, Sun L C, Yang Y T 2020 IEEE Trans. Electron. Devices 67 1085Google Scholar

    [19]

    Wang Y D, Duan B X, Song H T, Yang Y T 2020 IEEE Electron. Device Lett. 41 1681Google Scholar

    [20]

    Sun L C, Duan B X, Yang Y T 2021 IEEE J. Electron Devi. 9 409Google Scholar

  • [1] Gou Shi-Long, Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Sheng Jiang-Kun, Xue Yuan-Yuan, Pan Chen. Radiation mechanism of gate-controlled lateral PNP bipolar transistors in the hydrogen environment. Acta Physica Sinica, 2021, 70(15): 156101. doi: 10.7498/aps.70.20210351
    [2] Guo Chun-Sheng, Ding Yan, Jiang Bo-Yang, Liao Zhi-Heng, Su Ya, Feng Shi-Wei. High-efficiency on-line measurement of junction temperature based on bipolar transistors in accelerated experiment. Acta Physica Sinica, 2017, 66(22): 224703. doi: 10.7498/aps.66.224703
    [3] Tan Ji, Zhu Yang-Jun, Lu Shuo-Jin, Tian Xiao-Li, Teng Yuan, Yang Fei, Zhang Guang-Yin, Shen Qian-Xing. Modeling and simulation of the insulated gate bipolar transistor turn-off voltage slope under inductive load. Acta Physica Sinica, 2016, 65(15): 158501. doi: 10.7498/aps.65.158501
    [4] Bai Yu-Rong, Xu Jing-Ping, Liu Lu, Fan Min-Min, Huang Yong, Cheng Zhi-Xiang. Modeling on drain current of high-k gate dielectric fully-depleted nanoscale germanium-on-insulator p-channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2014, 63(23): 237304. doi: 10.7498/aps.63.237304
    [5] Ma Wu-Ying, Wang Zhi-Kuan, Lu Wu, Xi Shan-Bin, Guo Qi, He Cheng-Fa, Wang Xin, Liu Mo-Han, Jiang Ke. The base current broadening effect and charge separation method of gate-controlled lateral PNP bipolar transistors. Acta Physica Sinica, 2014, 63(11): 116101. doi: 10.7498/aps.63.116101
    [6] Ma Zhen-Yang, Chai Chang-Chun, Ren Xing-Rong, Yang Yin-Tang, Qiao Li-Ping, Shi Chun-Lei. The damage effect and mechanism of the bipolar transistor induced by different types of high power microwaves. Acta Physica Sinica, 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [7] Ren Xing-Rong, Chai Chang-Chun, Ma Zhen-Yang, Yang Yin-Tang, Qiao Li-Ping, Shi Chun-Lei. The damage effect and mechanism of bipolar transistors induced by injection of electromagnetic pulse from the base. Acta Physica Sinica, 2013, 62(6): 068501. doi: 10.7498/aps.62.068501
    [8] Du Chao-Hai, Li Zheng-Di, Xue Zhi-Hao, Liu Pu-Kun, Xue Qian-Zhong, Zhang Shi-Chang, Xu Shou-Xi, Geng Zhi-Hui, Gu Wei, Su Yi-Nong, Liu Gao-Feng. Research on the mode competition in a w-band lossy ceramic-loaded gyrotron backward-wave oscillator. Acta Physica Sinica, 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [9] Shi Wei-Wei, Li-Wen, Yi Ming-Dong, Xie Ling-Hai, Wei-Wei, Huang Wei. Progress of the improved mobilities of organic field-effect transistors based on dielectric surface modification. Acta Physica Sinica, 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [10] Liu Ya-Qiang, An Zhen-Lian, Cang Jun, Zhang Ye-Wen, Zheng Fei-Hu. Influence of fluorination time on surface charge accumulation on epoxy resin insulation. Acta Physica Sinica, 2012, 61(15): 158201. doi: 10.7498/aps.61.158201
    [11] Ma Zhen-Yang, Chai Chang-Chun, Ren Xing-Rong, Yang Yin-Tang, Chen Bin. The damage effect and mechanism of the bipolar transistor caused by microwaves. Acta Physica Sinica, 2012, 61(7): 078501. doi: 10.7498/aps.61.078501
    [12] Xi Shan-Bin, Lu Wu, Ren Di-Yuan, Zhou Dong, Wen Lin, Sun Jing, Wu Xue. Quantitative separation of radiation induced charges for gate controlled later PNP bipolar transistors. Acta Physica Sinica, 2012, 61(23): 236103. doi: 10.7498/aps.61.236103
    [13] Xi Shan-Bin, Lu Wu, Wang Zhi-Kuan, Ren Di-Yuan, Zhou Dong, Wen Lin, Sun Jing. Use the subthreshold-current technique to separate radiation induced defects in gate controlled lateral pnp bipolar transistors. Acta Physica Sinica, 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [14] Chen Jian-Jun, Chen Shu-Ming, Liang Bin, Liu Bi-Wei, Chi Ya-Qing, Qin Jun-Rui, He Yi-Bai. Influence of interface traps of p-type metal-oxide-semiconductor field effect transistor on single event charge sharing collection. Acta Physica Sinica, 2011, 60(8): 086107. doi: 10.7498/aps.60.086107
    [15] Chai Chang-Chun, Xi Xiao-Wen, Ren Xing-Rong, Yang Yin-Tang, Ma Zhen-Yang. The damage effect and mechanism of the bipolar transistor induced by the intense electromagnetic pulse. Acta Physica Sinica, 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [16] Cheng Peng-Fei, Li Sheng-Tao, Li Jian-Ying. Dielectric loss of ZnO varistor ceramics by variable temperature spectroscopy. Acta Physica Sinica, 2009, 58(8): 5721-5725. doi: 10.7498/aps.58.5721
    [17] Zhang Hu, Wang Qiu-Guo, Yang Bo-Jun, Yu Li. Modal characteristics and leakage loss of hollow-core photonic-bandgap fibers based on a square lattice. Acta Physica Sinica, 2008, 57(9): 5722-5728. doi: 10.7498/aps.57.5722
    [18] Wu Fan, Wang Tai-Hong. Stabilitydiagramsforsingle electrontransistors. Acta Physica Sinica, 2002, 51(12): 2829-2835. doi: 10.7498/aps.51.2829
    [19] ZHANG XING-HONG, HU YU-SHENG, WU JIE, CHENG ZHI-QUN, XIA GUAN-QUN, XU YUAN-SEN, CHEN ZHANG-HAI, GUI YONG-SHENG, CHU JUN-HAO. INFLUENCE OF DEEP LEVELS ON THE PERFORMANCE OF AlGaInP/GaAs HETEROJUNCTION BIPOLAR TRANSISTOR. Acta Physica Sinica, 1999, 48(3): 556-560. doi: 10.7498/aps.48.556
    [20] WANG XIAO-HUI, JIN XIN, YAO XI-XIAN. FLUX TRANSITION PROPERTIES OF RF-SQUID IN THE DIS-SIPATIVE MODE IN THE PRESENCE OF LARGE FLUCTUATION. Acta Physica Sinica, 1991, 40(10): 1689-1693. doi: 10.7498/aps.40.1689
Metrics
  • Abstract views:  554
  • PDF Downloads:  24
  • Cited By: 0
Publishing process
  • Received Date:  07 November 2023
  • Accepted Date:  26 December 2023
  • Available Online:  08 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回