Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of influence of laser pulse chirp on terahertz emission characteristics of gas induced by two-color laser field

Li Han-Nan Peng Yan

Citation:

Theoretical study of influence of laser pulse chirp on terahertz emission characteristics of gas induced by two-color laser field

Li Han-Nan, Peng Yan
PDF
HTML
Get Citation
  • With the development of terahertz (THz) wave research, the demand for controllable THz sources is increasing. How to obtain the regulated THz waves has been one of the research hotspots and key problem in the field of THz science. There have been researches in which the resulting THz wave is modulated by changing the wavelength, relative phase, energy, or chirp of the laser produced by a two-color laser. In this work, we establish a three-dimensional theoretical model of THz wave generation and subsequent propagation induced by two-color laser. And we investigate the influence of chirp modulation of different laser on THz wave by chirp modulation of the fundamental wave (FW) and the second harmonic wave (SHW) of two-color laser, including THz wave amplitude, THz wave center frequency and spectrum width, and analyze the physical mechanism of related phenomena. At the same time, the effects of different orders of magnitudes of laser chirp parameters (femtosecond and picosecond) and initial phase of laser pulse on THz wave parameters are also studied. The results are shown below. 1) In the two-color laser, the chirp of FW mainly affects the shape of THz wave when the initial phase is unchanged. The chirp modulation of SHW can cause the amplitude of THz wave to change significantly, and affect the center frequency and spectrum width of THz waves. 2) In the case of laser pulse width of femtosecond order, 40 fs is taken as an example. When the chirp parameter is of femtosecond magnitude, the chirp parameter has a great influence on the THz wave generation efficiency of two-color laser filament. At the picosecond magnitude, the chirp parameter has a weak effect on the THz wave energy and mainly affects the phase of the THz wave. 3) The initial phase of the two-color laser can aid in chirp modulation of THz wave to optimize the energy generated. 4) The initial phase of two-color laser can assist in the process of chirped laser modulation of terahertz waves to optimize the energy generated. Our research shows that the chirp modulation, as a controllable parameter, has multiple regulation effect on the properties of radiated THz waves. The related research results provide a new idea and basis for studying the generation and regulation of THz waves.
      Corresponding author: Peng Yan, py@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61988102, 62335012).
    [1]

    Pallavi D, Karim A, Cecil S J, Robert H G 2014 Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VII San Francisco, California, United States, February 1–6, 2014 p89850K

    [2]

    Bianco F, Miseikis V, Convertino D, Xu J H, Castellano F, Beere H E, Ritchie D A, Vitiello M S, Tredicucci A, Coletti C 2015 Opt. Express 23 11632Google Scholar

    [3]

    Adam A J L, Planken P C M, Meloni S, Dik J 2009 Opt. Express 17 3407Google Scholar

    [4]

    Han C, Chen Y 2018 IEEE. Commun. Mag. 56 96Google Scholar

    [5]

    Hu X, Zhou L, Wu X, Peng Y 2023 Adv. Photonics Nexus 2 044002Google Scholar

    [6]

    Peng Y, Huang J, Luo J, Yang Z, Wang L, Wu X, Zang X, Yu C, Gu M, Hu Q, Zhang X, Zhu Y, Zhuang S 2021 Photoni X 2 12Google Scholar

    [7]

    Peng Y, Shi C, Zhu Y, Gu M, Zhuang S 2020 PhotoniX 1 12Google Scholar

    [8]

    Hassani A, Dupuis A, Skorobogatiy M 2008 J. Opt. Soc. Am. B 25 1771Google Scholar

    [9]

    王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青 2019 物理学报 68 084205Google Scholar

    Wang L, Xiao R W, Ge S J, Shen Z X, Lü P, Hu W, Lu Y Q 2019 Acta Phys. Sin. 68 084205Google Scholar

    [10]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [11]

    Wang K, Mittleman D M 2004 Nature 432 376Google Scholar

    [12]

    Ding J, Maestrini A, Gatilova L, Cavanna A, Shi S, Wu W 2017 J. Infrared, Millimeter, Terahertz Waves 38 1331Google Scholar

    [13]

    Wang B, Shan S Y, Wu X J, Wang C, Pandey C, Nie T X, Zhao W S, Li Y T, Miao J G, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [14]

    Guo F, Pandey C, Wang C, Nie T, Wen L, Zhao W, Miao J G, Wang L, Wu X 2020 OSA Continuum 3 893Google Scholar

    [15]

    Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910Google Scholar

    [16]

    Mandehgar M, Yang Y, Grischkowsky D 2013 Opt. Lett. 38 3437Google Scholar

    [17]

    Möller L, Federici J, Sinyukov A, Xie C, Lim H C, Giles R C 2008 Opt. Lett. 33 393Google Scholar

    [18]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [19]

    闫志巾, 施卫 2021 物理学报 70 248704Google Scholar

    Yan Z J, Shi W 2021 Acta Phys. Sin. 70 248704Google Scholar

    [20]

    谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚 2012 物理学报 61 098701Google Scholar

    Tan Z Y, Chen Z, Han Y J, Zhang R, Li H, Guo X G, Cao J C 2012 Acta Phys. Sin. 61 098701Google Scholar

    [21]

    周康, 黎华, 万文坚, 李子平, 曹俊诚 2019 物理学报 68 109501Google Scholar

    Zhou K, Li H, Wan W J, Li Z P, Cao J C 2019 Acta Phys. Sin. 68 109501Google Scholar

    [22]

    张开春, 刘盛纲 2007 物理学报 56 5258Google Scholar

    Zhang K C, Liu S G 2007 Acta Phys. Sin. 56 5258Google Scholar

    [23]

    刘川川, 郝飞翔, 殷月伟, 李晓光 2020 物理学报 69 127301Google Scholar

    Liu C C, Hao F X, Yin Y W, Li X G 2020 Acta Phys. Sin. 69 127301Google Scholar

    [24]

    Hamster H, Sullivan A, Gordon S, White W, Falcone R W 1993 Phys. Rev. Lett. 71 2725Google Scholar

    [25]

    Hamster H, Sullivan A, Gordon S, Falcone R W 1994 Phys. Rev. E 49 671Google Scholar

    [26]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210Google Scholar

    [27]

    Kress M, Löffler T, Eden S, Thomson M, Roskos H G 2004 Opt. Lett. 29 1120Google Scholar

    [28]

    Zheng L, Zhao Q, Liu S Z, Xing X J 2012 Acta Phys. Sin. 61 245202Google Scholar

    [29]

    Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102Google Scholar

    [30]

    Nouman M T, Kim H-W, Woo J M, Hwang J H, Kim D, Jang J H 2016 Sci. Rep. 6 26452Google Scholar

    [31]

    Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345Google Scholar

    [32]

    Zhang S, Chen X, Liu K, Li H, Xu Y, Jiang X, Xu Y, Wang Q, Cao T, Tian Z 2022 PhotoniX 3 7Google Scholar

    [33]

    Liu K, Koulouklidis A, Parazoglou D, Stelios, Zhang X C 2016 The 8th International Symposium on Ultrafast Phenomena and Terahertz Waves Chongqing, China, October 10–12, 2016 pIM2B.1

    [34]

    Zhao J, Guo L, Chu W, Zeng B, Gao H, Cheng Y, Liu W 2015 Opt. Lett. 40 3838Google Scholar

    [35]

    He B, Nan J, Li M, Yuan S, Zeng H 2017 Opt. Lett. 42 967Google Scholar

    [36]

    Li M, Yuan S, Zeng H 2017 IEEE J. Sel. Top. Quantum Electron 23 1

    [37]

    Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar

    [38]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar

    [39]

    Wang W M, Sheng Z M, Wu H C, Chen M, Li C, Zhang J, Mima K 2008 Opt. Express 16 16999Google Scholar

    [40]

    Clerici M, Peccianti M, Schmidt B E, Caspani L, Shalaby M, Giguère M, Lotti A, Couairon A, Légaré F, Ozaki T, Faccio D, Morandotti R 2013 Phys. Rev. Lett. 110 253901Google Scholar

    [41]

    Zhang Z W, Liu Z F, Wang S X, Lu C H, Fan Z G, Kostin V A, Liu Y 2023 Appl. Phys. Lett. 123 031108Google Scholar

    [42]

    Nguyen A, González de Alaiza Martínez P, Déchard J, Thiele I, Babushkin I, Skupin S, Bergé L 2017 Opt. Express 25 4720Google Scholar

    [43]

    Nguyen A, Martínez P G D A, Thiele I, Skupin S, Bergé L 2018 New J. Phys. 20 033026Google Scholar

    [44]

    Roskos H G, Thomson M D, Kreß M, Löffler T 2007 Laser Photonics Rev. 1 349Google Scholar

    [45]

    Wang S F, Xiao H C, Peng Y 2020 J. Opt. Soc. Am. B 37 3325Google Scholar

    [46]

    Xiao H C, Wang S F, Peng Y, Mittleman D M, Zhao J Y, Jin Z M, Zhu Y M, Zhuang S L 2021 Phys. Rev. A 104 013517Google Scholar

    [47]

    Li P C, Zhou X X, Wang G L, Zhao Z X 2009 Phys. Rev. A 80 053825Google Scholar

    [48]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [49]

    Rae S C, Burnett K 1992 Phys. Rev. A 46 1084Google Scholar

    [50]

    Andreeva V A, Kosareva O G, Panov N A, Shipilo D E, Solyankin P M, Esaulkov M N, González de Alaiza Martínez P, Shkurinov A P, Makarov V A, Bergé L, Chin S L 2016 Phys. Rev. Lett. 116 063902Google Scholar

    [51]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photonics 2 605Google Scholar

    [52]

    Constant E, Garzella D, Breger P, Mével E, Dorrer C, Le Blanc C, Salin F, Agostini P 1999 Phys. Rev. Lett. 82 1668Google Scholar

    [53]

    Wang T J, Chen Y, Marceau C, Théberge F, Châteauneuf M, Dubois J, Chin S L 2009 Appl. Phys. Lett. 95 131108Google Scholar

  • 图 1  不同啁啾情况下的(a), (d), (g)双色激光合成电场与电子密度、(b), (e), (h)太赫兹波形以及(c), (f), (i)太赫兹频谱 (a)—(c)无啁啾情况; (d)—(f)仅基频波中存在正啁啾的情况; (g)—(i)仅倍频波中存在正啁啾的情况下

    Figure 1.  (a), (d), (g) Two-color laser synthetic electric field and electron density, (b), (e), (h) terahertz waveform and (c), (f), (i) terahertz spectrum of two-color laser with different chirps: (a)–(c) There is no chirp; (d)–(f) there is a positive chirp in the fundamental wave (FW); (g)–(i) there is a positive chirp in the second harmonic wave (SHW).

    图 2  负啁啾情况下的(a), (d)双色激光合成电场与电子密度、(b), (e)太赫兹波形以及(c), (f)太赫兹频谱 (a)—(c)在基频波中存在负啁啾的情况; (d)—(f)在倍频波中存在负啁啾的情况

    Figure 2.  (a), (d) Synthesized electric field and electron density, (b), (e) terahertz waveform and (c), (f) terahertz spectrum of two-color laser with negative chirps: (a)–(c) There is a negative chirp in the FW; (d)–(f) there is a negative chirp in the SHW.

    图 3  双色激光中同时存在啁啾情况下的(a), (d)双色激光合成电场与电子密度、(b), (e)太赫兹波形以及(c), (f)太赫兹频谱 (a)—(c)同时存在正啁啾的情况; (d)—(f)同时存在负啁啾的情况

    Figure 3.  (a), (d) Two-color laser synthetic electric field and electron density, (b), (e) terahertz waveform and (c), (f) terahertz spectrum of two-color laser with chirp exist simultaneously in the case of chirp in two-color laser at the same time: (a)—(c) There are positive chirps in two-color laser; (d)—(f) there are negative chirps in two-color laser.

    图 4  双色激光中存在相反啁啾情况下的(a), (d)双色激光合成电场与电子密度、(b), (e)太赫兹波形以及(c), (f)太赫兹频谱 (a)—(c)在基频波中存在正啁啾, 倍频波中存在负啁啾的情况; (d)—(f)在基频波中存在负啁啾, 倍频波中存在正啁啾的情况

    Figure 4.  (a), (d) Two-color laser synthetic electric field and electron density, (b), (e) terahertz waveform and (c), (f) terahertz spectrum of two-color laser with opposite chirp: (a)–(c) There is positive chirp in FW and negative chirp in SHW; (d)–(f) there is negative chirp in FW and positive chirp in SHW.

    图 5  (a)无啁啾情况与基频波存在正啁啾情况下0 fs时刻附近电场; (b)两种情况下各自产生的电流

    Figure 5.  (a) Electric field near the 0 fs time when there is no chirp and the FW has a positive chirp; (b) the current generated in each case.

    图 6  (a)不同初始相位和啁啾调制情况下太赫兹能量的变化; 倍频波中存在正啁啾情况下, 太赫兹能量最大值时(初始相位0.4π)的(b)太赫兹时域图和(c)太赫兹频域图; 双色激光中同时存在正啁啾情况下, 太赫兹能量最大值时(初始相位0.6π)的(d)太赫兹时域图和(e)太赫兹频域图

    Figure 6.  (a) Variation in THz energy under different initial phases and chirp modulation; (b) terahertz time domain diagram and (c) terahertz frequency domain diagram for the maximum terahertz energy with positive chirp in SHW (initial phase 0.4π); (d) terahertz time domain diagram and (e) terahertz frequency domain diagram for the maximum terahertz energy (initial phase 0.6π) with positive chirp in two-color laser.

    图 7  (a)当啁啾参数τ为ps量级即τ = 1 ps时, 不同初始相位和啁啾调制情况下太赫兹能量的变化; 倍频波中存在正啁啾情况下, 太赫兹能量最大值时(初始相位0.4π)的(b)太赫兹时域图和(c)太赫兹频域图; 双色光中同时存在正啁啾情况下, 太赫兹能量最大值时(初始相位0.7π)的(d)太赫兹时域图和(e)太赫兹频域图

    Figure 7.  (a) When the chirped parameter τ is of ps magnitude, that is, τ = 1 ps, the variation in THz energy under different initial phases and chirp modulation. (b) Terahertz time domain diagram and (c) terahertz frequency domain diagram for the maximum terahertz energy with positive chirp in SHW (initial phase 0.4π). (d) Terahertz time domain diagram and (e) terahertz frequency domain diagram for the maximum terahertz energy (initial phase 0.7π) with positive chirp in two-color laser.

    图 8  太赫兹能量与啁啾量的关系, 图右侧为基频波中存在正啁啾情况, 左侧为基频波中存在负啁啾情况

    Figure 8.  Relationship between terahertz energy and chirp. On the right is a positive chirp in the FW, and on the left is a negative chirp in the FW.

  • [1]

    Pallavi D, Karim A, Cecil S J, Robert H G 2014 Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VII San Francisco, California, United States, February 1–6, 2014 p89850K

    [2]

    Bianco F, Miseikis V, Convertino D, Xu J H, Castellano F, Beere H E, Ritchie D A, Vitiello M S, Tredicucci A, Coletti C 2015 Opt. Express 23 11632Google Scholar

    [3]

    Adam A J L, Planken P C M, Meloni S, Dik J 2009 Opt. Express 17 3407Google Scholar

    [4]

    Han C, Chen Y 2018 IEEE. Commun. Mag. 56 96Google Scholar

    [5]

    Hu X, Zhou L, Wu X, Peng Y 2023 Adv. Photonics Nexus 2 044002Google Scholar

    [6]

    Peng Y, Huang J, Luo J, Yang Z, Wang L, Wu X, Zang X, Yu C, Gu M, Hu Q, Zhang X, Zhu Y, Zhuang S 2021 Photoni X 2 12Google Scholar

    [7]

    Peng Y, Shi C, Zhu Y, Gu M, Zhuang S 2020 PhotoniX 1 12Google Scholar

    [8]

    Hassani A, Dupuis A, Skorobogatiy M 2008 J. Opt. Soc. Am. B 25 1771Google Scholar

    [9]

    王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青 2019 物理学报 68 084205Google Scholar

    Wang L, Xiao R W, Ge S J, Shen Z X, Lü P, Hu W, Lu Y Q 2019 Acta Phys. Sin. 68 084205Google Scholar

    [10]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [11]

    Wang K, Mittleman D M 2004 Nature 432 376Google Scholar

    [12]

    Ding J, Maestrini A, Gatilova L, Cavanna A, Shi S, Wu W 2017 J. Infrared, Millimeter, Terahertz Waves 38 1331Google Scholar

    [13]

    Wang B, Shan S Y, Wu X J, Wang C, Pandey C, Nie T X, Zhao W S, Li Y T, Miao J G, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [14]

    Guo F, Pandey C, Wang C, Nie T, Wen L, Zhao W, Miao J G, Wang L, Wu X 2020 OSA Continuum 3 893Google Scholar

    [15]

    Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910Google Scholar

    [16]

    Mandehgar M, Yang Y, Grischkowsky D 2013 Opt. Lett. 38 3437Google Scholar

    [17]

    Möller L, Federici J, Sinyukov A, Xie C, Lim H C, Giles R C 2008 Opt. Lett. 33 393Google Scholar

    [18]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [19]

    闫志巾, 施卫 2021 物理学报 70 248704Google Scholar

    Yan Z J, Shi W 2021 Acta Phys. Sin. 70 248704Google Scholar

    [20]

    谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚 2012 物理学报 61 098701Google Scholar

    Tan Z Y, Chen Z, Han Y J, Zhang R, Li H, Guo X G, Cao J C 2012 Acta Phys. Sin. 61 098701Google Scholar

    [21]

    周康, 黎华, 万文坚, 李子平, 曹俊诚 2019 物理学报 68 109501Google Scholar

    Zhou K, Li H, Wan W J, Li Z P, Cao J C 2019 Acta Phys. Sin. 68 109501Google Scholar

    [22]

    张开春, 刘盛纲 2007 物理学报 56 5258Google Scholar

    Zhang K C, Liu S G 2007 Acta Phys. Sin. 56 5258Google Scholar

    [23]

    刘川川, 郝飞翔, 殷月伟, 李晓光 2020 物理学报 69 127301Google Scholar

    Liu C C, Hao F X, Yin Y W, Li X G 2020 Acta Phys. Sin. 69 127301Google Scholar

    [24]

    Hamster H, Sullivan A, Gordon S, White W, Falcone R W 1993 Phys. Rev. Lett. 71 2725Google Scholar

    [25]

    Hamster H, Sullivan A, Gordon S, Falcone R W 1994 Phys. Rev. E 49 671Google Scholar

    [26]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210Google Scholar

    [27]

    Kress M, Löffler T, Eden S, Thomson M, Roskos H G 2004 Opt. Lett. 29 1120Google Scholar

    [28]

    Zheng L, Zhao Q, Liu S Z, Xing X J 2012 Acta Phys. Sin. 61 245202Google Scholar

    [29]

    Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102Google Scholar

    [30]

    Nouman M T, Kim H-W, Woo J M, Hwang J H, Kim D, Jang J H 2016 Sci. Rep. 6 26452Google Scholar

    [31]

    Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345Google Scholar

    [32]

    Zhang S, Chen X, Liu K, Li H, Xu Y, Jiang X, Xu Y, Wang Q, Cao T, Tian Z 2022 PhotoniX 3 7Google Scholar

    [33]

    Liu K, Koulouklidis A, Parazoglou D, Stelios, Zhang X C 2016 The 8th International Symposium on Ultrafast Phenomena and Terahertz Waves Chongqing, China, October 10–12, 2016 pIM2B.1

    [34]

    Zhao J, Guo L, Chu W, Zeng B, Gao H, Cheng Y, Liu W 2015 Opt. Lett. 40 3838Google Scholar

    [35]

    He B, Nan J, Li M, Yuan S, Zeng H 2017 Opt. Lett. 42 967Google Scholar

    [36]

    Li M, Yuan S, Zeng H 2017 IEEE J. Sel. Top. Quantum Electron 23 1

    [37]

    Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar

    [38]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar

    [39]

    Wang W M, Sheng Z M, Wu H C, Chen M, Li C, Zhang J, Mima K 2008 Opt. Express 16 16999Google Scholar

    [40]

    Clerici M, Peccianti M, Schmidt B E, Caspani L, Shalaby M, Giguère M, Lotti A, Couairon A, Légaré F, Ozaki T, Faccio D, Morandotti R 2013 Phys. Rev. Lett. 110 253901Google Scholar

    [41]

    Zhang Z W, Liu Z F, Wang S X, Lu C H, Fan Z G, Kostin V A, Liu Y 2023 Appl. Phys. Lett. 123 031108Google Scholar

    [42]

    Nguyen A, González de Alaiza Martínez P, Déchard J, Thiele I, Babushkin I, Skupin S, Bergé L 2017 Opt. Express 25 4720Google Scholar

    [43]

    Nguyen A, Martínez P G D A, Thiele I, Skupin S, Bergé L 2018 New J. Phys. 20 033026Google Scholar

    [44]

    Roskos H G, Thomson M D, Kreß M, Löffler T 2007 Laser Photonics Rev. 1 349Google Scholar

    [45]

    Wang S F, Xiao H C, Peng Y 2020 J. Opt. Soc. Am. B 37 3325Google Scholar

    [46]

    Xiao H C, Wang S F, Peng Y, Mittleman D M, Zhao J Y, Jin Z M, Zhu Y M, Zhuang S L 2021 Phys. Rev. A 104 013517Google Scholar

    [47]

    Li P C, Zhou X X, Wang G L, Zhao Z X 2009 Phys. Rev. A 80 053825Google Scholar

    [48]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [49]

    Rae S C, Burnett K 1992 Phys. Rev. A 46 1084Google Scholar

    [50]

    Andreeva V A, Kosareva O G, Panov N A, Shipilo D E, Solyankin P M, Esaulkov M N, González de Alaiza Martínez P, Shkurinov A P, Makarov V A, Bergé L, Chin S L 2016 Phys. Rev. Lett. 116 063902Google Scholar

    [51]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photonics 2 605Google Scholar

    [52]

    Constant E, Garzella D, Breger P, Mével E, Dorrer C, Le Blanc C, Salin F, Agostini P 1999 Phys. Rev. Lett. 82 1668Google Scholar

    [53]

    Wang T J, Chen Y, Marceau C, Théberge F, Châteauneuf M, Dubois J, Chin S L 2009 Appl. Phys. Lett. 95 131108Google Scholar

  • [1] Wei Gao-Shuai, Zhang Hui, Wu Xiao-Jun, Zhang Hong-Rui, Wang Chun, Wang Bo, Wang Li, Sun Ji-Rong. Terahertz emission from LaAlO3/SrTiO3 heterostructures pumped with femtosecond laser. Acta Physica Sinica, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [2] Song Bang-Ju, Jin Zuan-Ming, Guo Chen-Yang, Ruan Shun-Yi, Li Ju-Geng, Wan Cai-Hua, Han Xiu-Feng, Ma Guo-Hong, Yao Jian-Quan. Terahertz emission from Y3Fe5O12(YIG)/Pt heterostructures via ultrafast spin Seebeck effect. Acta Physica Sinica, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [3] Li Xiao-Lu, Bai Ya, Liu Peng. Control of the terahertz spectra generated from laser induced plasma. Acta Physica Sinica, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [4] Wang Wei-Min, Zhang Liang-Liang, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Theoretical and experimental studies on terahertz radiation from laser-driven air plasma. Acta Physica Sinica, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [5] Zheng Li, Guo Jian-Zhong. A controllable circular ring acoustic focused field. Acta Physica Sinica, 2016, 65(4): 044305. doi: 10.7498/aps.65.044305
    [6] Lian Fu-Qiang, Fan Zhong-Wei, Bai Zhen-Ao, Liu Yi-Zhou, Lin Wei-Ran, Zhang Xiao-Lei, Zhao Tian-Zhuo. Femtosecond fiber laser for high-stability and high-quality pulse compression. Acta Physica Sinica, 2015, 64(16): 164207. doi: 10.7498/aps.64.164207
    [7] Hong Wei-Yi. “Inverted-image” frequency chirp induced by self-phase modulation in highly noninstantaneous medium. Acta Physica Sinica, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [8] Zhu Wei-Wei, Zhang Qiu-Ju, Zhang Yan-Hui, Jiao Yang. Motion-induced X-ray and terahertz radiation of electrons captured in laser standing wave. Acta Physica Sinica, 2015, 64(12): 124104. doi: 10.7498/aps.64.124104
    [9] Chen Gao, Yang Yu-Jun, Guo Fu-Ming. Isolated 38 as pulse generation from two-color pulse. Acta Physica Sinica, 2013, 62(7): 073203. doi: 10.7498/aps.62.073203
    [10] Wang Kun, Cui Liang, Zhang Xiu-Ting, Li Xiao-Ying. Influence of pump chirp on the purity of an all fiber source of correlated photon pairs. Acta Physica Sinica, 2013, 62(16): 164205. doi: 10.7498/aps.62.164205
    [11] Zhang Kai-Yun, Du Hai-Wei, Chen Min, Sheng Zheng-Ming. Studies on the optimization of terahertz emission based on the field ionization current model. Acta Physica Sinica, 2012, 61(16): 160701. doi: 10.7498/aps.61.160701
    [12] Zhong Kai, Yao Jian-Quan, Xu De-Gang, Zhang Hui-Yun, Wang Peng. Theoretical research on cascaded difference frequency generation of terahertz radiation. Acta Physica Sinica, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [13] Wang Lei-Ran, Liu Xue-Ming, Gong Yong-Kang. Experimental research on high-energy dissipative solitons in an erbium-doped fiber laser. Acta Physica Sinica, 2010, 59(9): 6200-6204. doi: 10.7498/aps.59.6200
    [14] Wang Can-Hua, Zhang Li-Fu, Fu Xi-Quan, Wen Shuang-Chun. The study of spatiotemporal perturbation in the nonlinear propagation of broadband chirped pulsed laser. Acta Physica Sinica, 2010, 59(9): 6224-6230. doi: 10.7498/aps.59.6224
    [15] Wang Lei-Ran, Liu Xue-Ming, Gong Yong-Kang, Hu Xiao-Hong, Wang Yi-Shan, Lu Ke-Qing. Experimental research and theoretical study based on gain-guided soliton pulse fiber laser. Acta Physica Sinica, 2009, 58(7): 4664-4668. doi: 10.7498/aps.58.4664
    [16] Huang Nan, Li Xue-Feng, Liu Hong-Jun, Xia Cai-Peng. Effects of gain saturation in terahertz radiation based on difference frequency generation. Acta Physica Sinica, 2009, 58(12): 8326-8331. doi: 10.7498/aps.58.8326
    [17] Zheng Ji-Lin, Wang Rong, Fang Tao, Lu Lin, Pu Tao, Chen Xiang-Fei. A novel method of chirp elimination using reconstruction equivalent chirp superstructured fiber Bragg grating. Acta Physica Sinica, 2009, 58(10): 7017-7024. doi: 10.7498/aps.58.7017
    [18] Song Xiao-Zhong, Liu Hong-Jun, Wang Yi-Shan, Zhao Wei. Ultra-broadband optical parametric amplification based on pre-chirp controlling. Acta Physica Sinica, 2008, 57(1): 271-277. doi: 10.7498/aps.57.271
    [19] Tian Jian-Feng, Wu Zheng-Mao, Xia Guang-Qiong. Influence of introducing chirp on bistable characteristics of linear negative tapered Bragg gratings. Acta Physica Sinica, 2006, 55(12): 6419-6423. doi: 10.7498/aps.55.6419
    [20] Liu Wei-Hua, Wang Yi-Shan, Liu Hong-Jun, Duan Zuo-Liang, Zhao Wei, Li Yong-Fang, Peng Qin-Jun, Xu Zu-Yan. Effect of initial chirp on supercontinuum generation by femtosecond pulse in photonic crystal fibers. Acta Physica Sinica, 2006, 55(4): 1815-1820. doi: 10.7498/aps.55.1815
Metrics
  • Abstract views:  579
  • PDF Downloads:  30
  • Cited By: 0
Publishing process
  • Received Date:  14 November 2023
  • Accepted Date:  06 December 2023
  • Available Online:  22 December 2023
  • Published Online:  20 March 2024

/

返回文章
返回