Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-frequency resolution diamond nitrogen-vacancy center wide-spectrum imaging technology

Shen Yuan-Yuan Wang Bo Ke Dong-Qian Zheng Dou-Dou Li Zhong-Hao Wen Huan-Fei Guo Hao Li Xin Tang Jun Ma Zong-Min Li Yan-Jun Igor Vladimirovich Yaminsky Liu Jun

Citation:

High-frequency resolution diamond nitrogen-vacancy center wide-spectrum imaging technology

Shen Yuan-Yuan, Wang Bo, Ke Dong-Qian, Zheng Dou-Dou, Li Zhong-Hao, Wen Huan-Fei, Guo Hao, Li Xin, Tang Jun, Ma Zong-Min, Li Yan-Jun, Igor Vladimirovich Yaminsky, Liu Jun
PDF
HTML
Get Citation
  • High-resolution wide-spectrum measurement techniques have important applications in fields such as astronomy, wireless communication, and medical imaging. Nitrogen-vacancy (NV) center in diamond is well known for its high stability, high sensitivity, real-time monitoring, single-point detection, and suitability for long-term measurement, and has an outstanding choice for spectrum analyzers. Currently, spectrum analyzers based on NV centers as detectors can perform real-time spectrum analysis in the range of several tens of gigahertz, but their frequency resolution is limited to a MHz level. In this study, we construct a quantum diamond microwave spectrum imaging system by combining continuous wave-mixing techniques. According to the spin-related properties of the NV center in diamond, we implement optical pumping by 532 nm green laser light illuminating the diamond NV center. A spherical magnet is used to produce a magnetic field gradient along the direction of the diamond crystal. By adjusting the size and direction of the magnetic field gradient, spatial encoding of the resonance frequency of the NV center is achieved. The magnetic field gradient induces the Zeeman effect on the diamond surface at different positions, generating corresponding ODMR signals. Through accurate programming, we coordinate the frequency scanning step size of the microwave source with the camera exposure and image storage time, and synchronize them circularly according to the order of image acquisition. Ultimately, after algorithmic processing, we successfully obtain comprehensive spectrum data in a range from 900 MHz to 6.0 GHz. Within the measurable spectrum range, the system employs continuous wave-mixing, simultaneously applying resonant microwaves and slightly detuning auxiliary microwaves to effectively excite the NV center. This method triggers off microwave interference effects, disrupting the balance between laser-induced polarization and microwave-induced spontaneous relaxation. Specifically, microwave interference causes the phase and amplitude of the fluorescence signal to change, leading to the generation of alternating current fluorescence signals. This further enhances the response of the NV magnetometer to weak microwave signals. The method enables the system to achieve a frequency resolution of 1 Hz in the measurable spectrum range, and it can separately measure the frequency resolution of multiple frequency points with a frequency step size of 1 MHz. The research results indicate that the wide-spectrum measurement based on NV centers can achieve sub-hertz frequency resolution, providing robust technical support for future spectrum analysis and applications.
      Corresponding author: Ma Zong-Min, mzmncit@163.com ; Liu Jun, liuj@nuc.edu.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China, the International Cooperation and Exchange Project of the National Natural Science Foundation of China (Grant No. 62220106012), the Shanxi Provincial Fund for Outstanding Young Scholars, China (Grant No. 202103021221007), and the Fund for Shanxi Provincial “1331” Project Key Subjects Construction, China (Grant No. 1331KSC).
    [1]

    Pastor-Marazuela I, Connor L, van Leeuwen J, Maan, Y, ter Veen S, Bilous A, Oostrum L, Petroff E, Straal S, Vohl D, Attema J, Boersma O M, Kooistra E, van der Schuur D, Sclocco A, Smits R, Adams E A K, Adebahr B, de Blok W J G, Coolen A H W M, Damstra S, Dénes H, Hess K M, van der Hulst T, Hut B, Ivashina V M, Kutkin A, Loose G M, Lucero D M, Mika A, Moss V A, Mulder H, Norden M J, Oosterloo T, Orrú E, Ruiter M, Wijnholds S J 2021 Nature 596 505Google Scholar

    [2]

    Holl P M, Reinhard F 2017 Phys. Rev. Lett. 118 183901Google Scholar

    [3]

    Chandra R, Zhou H Y, Balasingham I, Narayanan R M 2015 IEEE. Trans. Biomed. Eng. 62 1667Google Scholar

    [4]

    Boss J M, Cujia K S, Zopes J, Degen C L 2017 Science 356 837Google Scholar

    [5]

    Assouly R, Dassonneville R, Peronnin T, Bienfait A, Huard B 2023 Nat. Phys. 19 1418Google Scholar

    [6]

    Kim D, Ibrahim M I, Foy C, Trusheim M E, Han R, Englund D R 2019 Nat. Electron. 2 284Google Scholar

    [7]

    Joas T, Waeber A M, Braunbeck G, Reinhard F 2017 Nat. Commun. 8 964Google Scholar

    [8]

    Haikka P, Kubo Y, Bienfait A, Bertet P, Molmer K 2017 Phys. Rev. A 95 022306Google Scholar

    [9]

    Wang Y W, Liu Y S, Guo H, Han X C, Cai A J, Li S K, Zhao P F, Liu J 2020 Appl. Phys. Express 13 112002Google Scholar

    [10]

    Shao L B, Liu R S, Zhang M, Shneidman A V, Audier X, Markham M, Dhillon H, Twitchen D J, Xiao Y F, Loncar M 2016 Adv. Opt. Mater. 4 1075Google Scholar

    [11]

    Chipaux M, Toraille L, Larat C, Morvan L, Pezzagna S, Meijer J, Debuisschert T 2015 Appl. Phys. Lett. 107 233502Google Scholar

    [12]

    Ludovic M, Thierry D 2018 International Topical Meeting on Microwave Photonics Toulouse, France, October 22-25, 2018 p1

    [13]

    Magaletti S, Mayer L, Roc J F, Debuisschert T 2022 Comm. Eng. 1 19Google Scholar

    [14]

    Meinel J, Vorobyov V, Yavkin B, Dasari D, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2021 Nat. Commun. 12 2737Google Scholar

    [15]

    Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar

    [16]

    Fescenko I, Jarmola A, Savukov I, Kehayias P, Smits J, Damron J, Ristoff N, Mosavian N, Acosta V M 2020 Phys. Rev. Res. 2 023394Google Scholar

    [17]

    Likhachev K V, Breev I D, Kidalov S V, Baranov P G, Nagalyuk S S, Ankudinov A V, Anisimov A N 2022 JETP Lett. 116 840Google Scholar

    [18]

    Ho K O, Leung M Y, Wang W Y, Xie J Y, Yip K Y, Wu J H, Goh S K, Denisenko A, Wrachtrup J, Yang S 2023 Phys. Rev. Appl. 19 044091Google Scholar

    [19]

    Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T, Awschalom D D 2008 Phys. Rev. Lett. 101 117601Google Scholar

    [20]

    Zargaleh S A, von Bardeleben H J, Cantin J L, Gerstmann U, Hameau S, Eblé B, Gao W 2018 Phys. Rev. B 98 214113Google Scholar

    [21]

    Sangtawesin S, Dwyer B L, Srinivasan S, Allred J J, Rodgers L V H, De Greve K, Stacey A, Dontschuk N, O'Donnell K M, Hu D, Evans D A, Jaye C, Fischer D A, Markham M L, Twitchen D J, Park H, Lukin M D, de Leon N P 2019 Phys. Rev. X 9 031052Google Scholar

  • 图 1  NV色心频谱分析 (a) NV色心能级图; (b) 沿D轴向金刚石晶体施加磁场梯度; (c) 在金刚石晶体表面不同位置, 磁场梯度引起塞曼效应导致相应的ODMR信号产生; (d) 使用相机对图像进行采集并将其保存为三维数据; (e) 利用算法拟合将图像存储格式从三维数据转变为二维数据, 在整个磁梯度范围内, 通过拼接图像来生成对应的频谱图像; (f) 测量可测频谱范围内的任意频点的频率分辨率

    Figure 1.  NV center spectral analysis: (a) Energy level diagram of the NV center; (b) application of a magnetic field gradient along the D-axis of the diamond crystal; (c) magnetic field gradient induces the Zeeman effect at different positions on the surface of the diamond crystal, resulting in corresponding ODMR signals; (d) acquisition of images using a camera and conversion into three-dimensional data; (e) utilization of an algorithm for fitting, transforming the image storage format from three-dimensional data to two-dimensional data, and generating the corresponding spectral images across the entire magnetic gradient range; (f) measurement of frequency resolution at arbitrary frequency points within the measurable spectral range.

    图 2  实验装置系统

    Figure 2.  Experimental Setup System.

    图 3  调整磁场与NV轴对准的过程 (a) ODMR成像呈现了四组谱线, 对应于磁场方向与NV色心的4个轴向均未对齐; (b) ODMR成像显示了两组谱线, 其中三组谱线重叠, 对应于磁场与某一NV轴对齐

    Figure 3.  Process to align magnetic field and NV centers: (a) ODMR imaging presents four sets of spectra, corresponding to a misalignment of the magnetic field with all four axial directions of the NV centers; (b) ODMR imaging displays two sets of spectra, with three of them overlapping, indicating alignment of the magnetic field with a specific NV axis.

    图 4  叠加磁铁在不同位置相对应的微波频谱图像

    Figure 4.  Overlay microwave spectroscopy images corresponding to magnets positioned at different locations.

    图 5  NV色心共振线宽不均匀展宽原因 (a) NV色心零场ODMR谱; (b) 在3.02 GHz处不同微波功率下的ODMR的单峰曲线

    Figure 5.  Causes of non-uniform broadening of NV center resonance linewidth: (a) Zero-field ODMR spectrum of NV centers; (b) single-peak curves of ODMR at 3.02 GHz under different microwave powers.

    图 6  频率分辨率测量结果 (a) 在可测频谱范围内选取与3.50 GHz频率差为1000, 100, 100, 5, 1, 0.1 Hz的频率点的外差实验时域测量结果; (b) 在可测频谱范围内选取与3.50 GHz频率差为1000, 100, 100, 5, 1, 0.1 Hz的频率点的外差实验频域测量结果; (c) 在可测频谱范围内多个谐振频率点的频率分辨率测量结果

    Figure 6.  Frequency resolution measurement results: (a) Time-domain measurement results of heterodyne experiments at frequency differences of 1000, 100, 100, 5, 1, 0.1 Hz relative to 3.50 GHz within the measurable spectral range; (b) frequency-domain measurement results of heterodyne experiments at frequency differences of 1000, 100, 100, 5, 1, 0.1 Hz relative to 3.50 GHz within the measurable spectral range; (c) frequency resolution measurement results of multiple resonant frequency points within the measurable spectral range.

  • [1]

    Pastor-Marazuela I, Connor L, van Leeuwen J, Maan, Y, ter Veen S, Bilous A, Oostrum L, Petroff E, Straal S, Vohl D, Attema J, Boersma O M, Kooistra E, van der Schuur D, Sclocco A, Smits R, Adams E A K, Adebahr B, de Blok W J G, Coolen A H W M, Damstra S, Dénes H, Hess K M, van der Hulst T, Hut B, Ivashina V M, Kutkin A, Loose G M, Lucero D M, Mika A, Moss V A, Mulder H, Norden M J, Oosterloo T, Orrú E, Ruiter M, Wijnholds S J 2021 Nature 596 505Google Scholar

    [2]

    Holl P M, Reinhard F 2017 Phys. Rev. Lett. 118 183901Google Scholar

    [3]

    Chandra R, Zhou H Y, Balasingham I, Narayanan R M 2015 IEEE. Trans. Biomed. Eng. 62 1667Google Scholar

    [4]

    Boss J M, Cujia K S, Zopes J, Degen C L 2017 Science 356 837Google Scholar

    [5]

    Assouly R, Dassonneville R, Peronnin T, Bienfait A, Huard B 2023 Nat. Phys. 19 1418Google Scholar

    [6]

    Kim D, Ibrahim M I, Foy C, Trusheim M E, Han R, Englund D R 2019 Nat. Electron. 2 284Google Scholar

    [7]

    Joas T, Waeber A M, Braunbeck G, Reinhard F 2017 Nat. Commun. 8 964Google Scholar

    [8]

    Haikka P, Kubo Y, Bienfait A, Bertet P, Molmer K 2017 Phys. Rev. A 95 022306Google Scholar

    [9]

    Wang Y W, Liu Y S, Guo H, Han X C, Cai A J, Li S K, Zhao P F, Liu J 2020 Appl. Phys. Express 13 112002Google Scholar

    [10]

    Shao L B, Liu R S, Zhang M, Shneidman A V, Audier X, Markham M, Dhillon H, Twitchen D J, Xiao Y F, Loncar M 2016 Adv. Opt. Mater. 4 1075Google Scholar

    [11]

    Chipaux M, Toraille L, Larat C, Morvan L, Pezzagna S, Meijer J, Debuisschert T 2015 Appl. Phys. Lett. 107 233502Google Scholar

    [12]

    Ludovic M, Thierry D 2018 International Topical Meeting on Microwave Photonics Toulouse, France, October 22-25, 2018 p1

    [13]

    Magaletti S, Mayer L, Roc J F, Debuisschert T 2022 Comm. Eng. 1 19Google Scholar

    [14]

    Meinel J, Vorobyov V, Yavkin B, Dasari D, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2021 Nat. Commun. 12 2737Google Scholar

    [15]

    Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar

    [16]

    Fescenko I, Jarmola A, Savukov I, Kehayias P, Smits J, Damron J, Ristoff N, Mosavian N, Acosta V M 2020 Phys. Rev. Res. 2 023394Google Scholar

    [17]

    Likhachev K V, Breev I D, Kidalov S V, Baranov P G, Nagalyuk S S, Ankudinov A V, Anisimov A N 2022 JETP Lett. 116 840Google Scholar

    [18]

    Ho K O, Leung M Y, Wang W Y, Xie J Y, Yip K Y, Wu J H, Goh S K, Denisenko A, Wrachtrup J, Yang S 2023 Phys. Rev. Appl. 19 044091Google Scholar

    [19]

    Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T, Awschalom D D 2008 Phys. Rev. Lett. 101 117601Google Scholar

    [20]

    Zargaleh S A, von Bardeleben H J, Cantin J L, Gerstmann U, Hameau S, Eblé B, Gao W 2018 Phys. Rev. B 98 214113Google Scholar

    [21]

    Sangtawesin S, Dwyer B L, Srinivasan S, Allred J J, Rodgers L V H, De Greve K, Stacey A, Dontschuk N, O'Donnell K M, Hu D, Evans D A, Jaye C, Fischer D A, Markham M L, Twitchen D J, Park H, Lukin M D, de Leon N P 2019 Phys. Rev. X 9 031052Google Scholar

  • [1] Tan Cong, Wang Deng-Long, Dong Yao-Yong, Ding Jian-Wen. Storage and retrieval of solitons in electromagnetically induced transparent system of V-type three-level diamond nitrogen-vacancy color centers. Acta Physica Sinica, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [2] Li Jun-Peng, Ren Ze-Yang, Zhang Jin-Feng, Wang Han-Xue, Ma Yuan-Chen, Fei Yi-Fan, Huang Si-Yuan, Ding Sen-Chuan, Zhang Jin-Cheng, Hao Yue. Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films. Acta Physica Sinica, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [3] He Jian, Jia Yan-Wei, Tu Ju-Ping, Xia Tian, Zhu Xiao-Hua, Huang Ke, An Kang, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming. Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation. Acta Physica Sinica, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [4] Yang Zhi-Ping, Kong Xi, Shi Fa-Zhan, Du Jiang-Feng. Phase transition observation of nanoscale water on diamond surface. Acta Physica Sinica, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [5] Wu Jian-Dong,  Cheng Zhi,  Ye Xiang-Yu,  Li Zhao-Kai,  Wang Peng-Fei,  Tian Chang-Lin,  Cheng Hong-Wei. Coherent electrical control of a single electron spin in diamond nitrogen-vacancy centers. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [6] Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei. Coherent electrical control of single electron spin in diamond nitrogen-vacancy center. Acta Physica Sinica, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [7] Lin Hao-Bin, Zhang Shao-Chun, Dong Yang, Zheng Yu, Chen Xiang-Dong, Sun Fang-Wen. Temperature sensing with nitrogen vacancy center in diamond. Acta Physica Sinica, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [8] Zhao Peng-Ju, Kong Fei, Li Rui, Shi Fa-Zhan, Du Jiang-Feng. Nanoscale zero-field detection based on single solid-state spins in diamond. Acta Physica Sinica, 2021, 70(21): 213301. doi: 10.7498/aps.70.20211363
    [9] Phase Transition Observation of Nanoscale Water on Diamond Surface. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211348
    [10] Shen Xiang, Zhao Li-Ye, Huang Pu, Kong Xi, Ji Lu-Min. Atomic spin and phonon coupling mechanism of nitrogen-vacancy center. Acta Physica Sinica, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [11] Feng Yuan-Yao, Li Zhong-Hao, Zhang Yang, Cui Ling-Xiao, Guo Qi, Guo Hao, Wen Huan-Fei, Liu Wen-Yao, Tang Jun, Liu Jun. Optimization of optical control of nitrogen vacancy centers in solid diamond. Acta Physica Sinica, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [12] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [13] Liao Qing-Hong, Ye Yang, Li Hong-Zhen, Zhou Nan-Run. Quadrature squeezing of the system consisting of nitrogen-vacancy centers in diamond coupled to cavity field and mechanical resonator. Acta Physica Sinica, 2018, 67(4): 040302. doi: 10.7498/aps.67.20172170
    [14] Dong Yang, Du Bo, Zhang Shao-Chun, Chen Xiang-Dong, Sun Fang-Wen. Solid quantum sensor based on nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [15] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [16] Li Lu-Si, Li Hong-Hui, Zhou Li-Li, Yang Zhi-Sheng, Ai Qing. Measurement of weak static magnetic field with nitrogen-vacancy color center. Acta Physica Sinica, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [17] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [18] Wang Meng-Meng, Quan Run-Ai, Tai Zhao-Yang, Hou Fei-Yan, Liu Tao, Zhang Shou-Gang, Dong Rui-Fang. Measurement of the spectral properties of the coincident-frequency entangled biphoton state at optical communication wavelength. Acta Physica Sinica, 2014, 63(19): 194206. doi: 10.7498/aps.63.194206
    [19] Liu Dong-Qi, Chang Yan-Chun, Liu Gang-Qin, Pan Xin-Yu. Electron spin studies of nitrogen vacancy centers in nanodiamonds. Acta Physica Sinica, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [20] ZHU DE-ZHANG, PAN HAO-CHANG, CAO JIAN-QING, ZHU FU-YING, CHEN GUO-MING, CHEN GUO-LIANG, YANG JIE, ZOU SHI-CHANG. STUDY ON LOW ENERGY ION BEAM NITRIDATION OF Si BY HIGH RESOLUTION CHANNELING-BACKSCATTERING. Acta Physica Sinica, 1990, 39(8): 96-99. doi: 10.7498/aps.39.96
Metrics
  • Abstract views:  753
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  21 November 2023
  • Accepted Date:  20 December 2023
  • Available Online:  02 January 2024
  • Published Online:  20 March 2024

/

返回文章
返回