Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improving crystallization and photoelectric performance of CsPbI2Br perovskite under ambient air via dynamic hot-air assisted recrystallization strategy

Zhang Zi-Fa Yuan Xiang Lu Ying-Shen He Dan-Min Yan Quan-He Cao Hao-Yu Hong Feng Jiang Zui-Min Xu Run Ma Zhong-Quan Song Hong-Wei Xu Fei

Citation:

Improving crystallization and photoelectric performance of CsPbI2Br perovskite under ambient air via dynamic hot-air assisted recrystallization strategy

Zhang Zi-Fa, Yuan Xiang, Lu Ying-Shen, He Dan-Min, Yan Quan-He, Cao Hao-Yu, Hong Feng, Jiang Zui-Min, Xu Run, Ma Zhong-Quan, Song Hong-Wei, Xu Fei
PDF
HTML
Get Citation
  • Organic cations such as methylamine or formamidine in organic-inorganic hybrid perovskites readily react with oxygen or water at high temperatures, leading the perovskite structure to decompose into organic gases and lead iodide finally. In order to solve the instability problem of organic cations, researchers have studied the heat-resistant all inorganic CsPbX3 (X is Cl, Br, I or mixed halide) perovskites. Mixed halide perovskite CsPbI2Br, serving as a top cell in semi-transparent solar cells and tandem cells because of its excellent thermal stability and suitable bandgap (1.90 eV), has attracted much attention. Although high-performance CsPbI2Br solar cells can be prepared in a glove box, this preparation method not only increases its cost but also has complex manufacturing process, unsuitable for low-cost commercial manufacturing. However, CsPbI2Br thin films prepared in ambient air are susceptible to humidity, resulting in low coverage, poor crystallization quality, numerous pinholes, and easy transformation into non perovskite phases. To overcome the troubles of pervoksite fabrication in ambient air, a feasible way is to reduce the moisture around the films as much as possible according to dynamic hot-air assisted strategy. However, the hot air accelerates the evaporation rate of solvent, resulting in the decrease of grain size. In order to improve the crystal growth and long-term stability in dynamic hot-air assisted strategy, in this work, we present a dynamic hot-air assisted recrystallization (DHR) strategy to prepare high-quality CsPbI2Br thin films in ambient air (i.e. the CsPbI2Br thin films prepared via dynamic hot-air strategy are recrystallized by using a green solvent (methylamine acetate) with high viscosity coefficient). Under ambient air with high humidity (RH>60%), the CsPbI2Br thin film with high coverage, (100) preferred orientation, large average grain size, and stable structure is prepared via DHR strategy. The dynamic hot-air process can effectively reduce the moisture around the film and increase the nucleation sites in the precursor solution, thereby improving the coverage of the film. However, this process inevitably results in the significant decrease of grain size (Rave= 0.32 μm) (i.e. more grain boundaries), exacerbating non-radiative recombination of carriers associated with trap states at these boundaries. The high coverage increases the grain-to-grain contact area, facilitating complete recrystallization. Thus, the recrystallization process can significantly increase the grain size (Rave = 2.63 μm) and obtain a (100) preferred orientation (I(110)/I(200) = 0.006), resulting in high photoluminescence intensity and long fluorescence lifetime (118 ns). The unencapsulated CsPbI2Br perovskite solar cell (PSC) optimized via DHR strategy with low hysterescence factor (2.34%) and high repeatability exhibits a high power conversion efficiency (PCE = 17.55%), which is higher than those of most CsPbI2Br PSCs prepared in ambient air and gloveboxes previously reported. Moreover, the unencapsulated CsPbI2Br PSC possesses an excellent storage stability under ambient air with high humidity (RH > 60%), remaining 96% of the original PCE after aging 40 days. This provides a promising approach for achieving high-performance and long-term stable CsPbI2Br films under ambient air with high humidity, which is expected to promote the commercialization process of perovskite/silicon tandem cells and semi-transparent devices.
  • 图 1  对照组和优化组薄膜的 (a) OM表面形貌图、(b) AFM表面形貌图、(c)晶粒尺寸统计图、(d) XRD图谱和(e)示意图

    Figure 1.  The (a) OM images, (b) AFM images, (c) grain size statistics, (d) XRD patterns, and (e) schematic of the control group and optimized group thin films.

    图 2  CsPbI2Br单胞的 (a)晶体结构和(b)能带结构; 对照组和优化组薄膜的(c)紫外可见吸收光谱及PL光谱(实线表示玻璃基底上PVSK的PL光谱; 方块表示SnO2上PVSK的PL光谱)

    Figure 2.  (a) Crystal structure and (b) band structure of CsPbI2Br unit cell; (c) UV-vis absorption spectra and PL spectra of the control group and optimized group thin films. (the solid line represents the PL spectra of PVSK on glass; the square dots represent the PL spectra of PVSK on SnO2).

    图 3  对照组和优化组薄膜的 (a)吸收系数的对数形式与光子能量的曲线图, (b)透射光谱, (c)TRPL光谱, 以及(d)—(g)老化图像及其紫外可见吸收光谱

    Figure 3.  The (a) ln(α) versus energy, (b) transmission spectra, (c) TRPL spectra, and (d)–(g) photos and UV-vis absorption spectra with aging time of the control group and optimized group thin films.

    图 4  对照组和优化组钙钛矿太阳能电池的 (a)光电流密度-电压曲线, (b)光电流密度-电压正反扫曲线, (c)外量子效率, (d)转换效率统计分布图, (e)短路电流统计分布图, (f)开路电压统计分布图, (g)填充因子统计分布图, (h)开路电压随光照强度变化, (i)电流-电压曲线, (j)储存稳定性

    Figure 4.  The (a) J-V curves, (b) hysteresis curves, (c) EQE spectra, (d) PCE statistics, (e) JSC statistics, (f) VOC statistics, (g) FF statistics, (h) light intensity-dependent VOC variation, (i) current-voltage curves, and (j) storage stability of the control group and optimized group perovskite solar cells.

    表 1  对照组与优化组CsPbI2Br薄膜TRPL光谱的拟合参数

    Table 1.  Fitting parameters of TRPL spectra for the control group and optimized group CsPbI2Br thin films.

    SampleA1τ1 /nsA2τ2 /nsτave/ns
    Control0.926.450.0811875
    REC0.917.350.09160112
    DHA0.712.770.2910599
    DHR0.699.360.31135118
    DownLoad: CSV

    表 2  采用动态热风辅助再结晶策略的CsPbI2Br太阳能电池与其他CsPbI2Br太阳能电池的性能比较

    Table 2.  Performance comparison of CsPbI2Br solar cells via dynamic hot-air assisted recrystallization strategy with other reports.

    年份制备环境策略效率/%稳定性文献
    2022N2Doping16.2088.6%, 42 day
    (air, 30% RH)
    [35]
    2023N2Interface engineering17.3388.7%, 42 day
    (air, 10% RH)
    [36]
    2023N2Doping17.7097%, 42 day
    (air, 10% RH)
    [37]
    2019air, 25~35% RHDHA14.8590%, 17 day
    (air, 85 ℃)
    [17]
    2020air, 30% RHPrecursor engineering16.1493%, 35 day
    (air, 30% RH)
    [18]
    2021air, 35% RHDHA+Doping17.4680%, 17 day
    (air, 30% RH)
    [38]
    2023air, —DHA+Doping16.7490%, 17 day
    (air, 25% RH)
    [39]
    2023air, 20% RHDHA+Doping17.3984%, 9 day
    (N2, 85 ℃)
    [19]
    2023air, —Doping17.3890%, 42 day
    (air, 25% RH)
    [40]
    2023air, —DHA+Doping17.4087.25%, 30 day (air, 14% RH)[41]
    2024air, >60% RHDHR17.5596%, 40 day
    (air, >60% RH)
    This work
    DownLoad: CSV
  • [1]

    Zhang H, Pfeifer L, Zakeeruddin S M, Chu J H, Grätzel M 2023 Nat. Rev. Chem. 7 632Google Scholar

    [2]

    Zhang S, Ye F Y, Wang X Y, Chen R, Zhang H D, Zhan L Q, Jiang X Y, Li Y W, Ji X Y, Liu S J, Yu M J, Yu F R, Zhang Y L, Wu R H, Liu Z H, Ning Z J, Neher D, Han L Y, Lin Y Z, Tian H, Chen W, Stolterfoht M, Zhang L J, Zhu W H, Wu Y Z 2023 Science 380 404Google Scholar

    [3]

    Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [4]

    Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar

    [5]

    Xu D F, Wang J A, Duan Y W, Yang S M, Zou H, Yang L, Zhang N, Zhou H, Lei X R, Wu M Z, Liu S Z, Liu Z K 2023 Adv. Funct. Mater. 33 2304237Google Scholar

    [6]

    Wang J A, Che Y H, Duan Y W, Liu Z K, Yang S M, Xu D F, Fang Z M, Lei X R, Li Y, Liu S Z 2023 Adv. Mater. 35 2210223Google Scholar

    [7]

    Li Y R, Zhang Y, Zhu P D, Li J B, Wu J W, Zhang J Y, Zhou X Y, Jiang Z Y, Wang X Z, Xu B M 2023 Adv. Funct. Mater. 33 2309010Google Scholar

    [8]

    Zeng Q S, Zhang X Y, Feng X L, Lu S Y, Chen Z L, Yong X, Redfern S A T, Wei H T, Wang H Y, Shen H Z, Zhang W, Zheng W T, Zhang H, Tse J S, Yang B 2018 Adv. Mater. 30 1705393Google Scholar

    [9]

    Guo Y X, Yin X T, Liu J, Wen S, Wu Y T, Que W X 2019 Sol. RRL 3 1900135Google Scholar

    [10]

    Long Y, Liu K, Zhang Y L, Li W Z 2021 Molecules 26 3398Google Scholar

    [11]

    Sun S Q, Xu X W, Sun Q, Yao Q, Cai Y T, Li X Y, Xu Y L, He W, Zhu M, Lv X, Lin F C R, Jen A K Y, Shi T T, Yip H L, Fung M K, Xie Y M 2023 Adv. Energy Mater. 13 2204347Google Scholar

    [12]

    Shan S Q, Xu C, Wu H T, Niu B F, Fu W F, Zuo L J, Chen H Z 2023 Adv. Energy Mater. 13 2203682Google Scholar

    [13]

    Liu X Y, Lian H J, Zhou Z R, Zou C, Xie J, Zhang F, Yuan H Y, Yang S, Hou Y, Yang H G 2022 Adv. Energy Mater. 12 2103933Google Scholar

    [14]

    Wang Y, Mahmoudi T, Rho W Y, Hahn Y B 2019 Nano Energy 64 103964Google Scholar

    [15]

    Cheng Y H, Xu X W, Xie Y M, Li H W, Qing J, Ma C Q, Lee C S, So F, Tsang S W 2017 Sol. RRL 1 1700097Google Scholar

    [16]

    Gao H, Ban C X, Li F M, Yu T, Yang J, Zhu W D, Zhou X X, Fu G, Zou Z G 2015 ACS Appl. Mater. Interfaces 7 9110Google Scholar

    [17]

    Duan C Y, Cui J, Zhang M M, Han Y, Yang S M, Zhao H, Bian H T, Yao J X, Zhao K, Liu Z K, Liu S Z 2020 Adv. Energy Mater. 10 2000691Google Scholar

    [18]

    Mali S S, Patil J V, Hong C K 2019 Nano Lett. 19 6213Google Scholar

    [19]

    Xiao H R, Zuo C T, Zhang L X, Zhang W H, Hao F, Yi C Y, Liu F Y, Jin H L, Ding L M 2023 Nano Energy 106 108061Google Scholar

    [20]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [21]

    Yin G N, Zhao H, Jiang H, Yuan S H, Niu T Q, Zhao K, Liu Z K, Liu S Z 2018 Adv. Funct. Mater. 28 1803269Google Scholar

    [22]

    Wang J X, Liu Y B, Xiao X D, Bi Z N, Lu Y, Sheng G Z, Cai X S, Zhu Y Q, Xu X Q, Xu G 2021 Sol. Energy 216 7Google Scholar

    [23]

    Yu F Y, Han Q J, Wang L, Yang S Z, Cai X Y, Zhang C, Ma T L 2021 Sol. RRL 5 2100404Google Scholar

    [24]

    Cao R N, Xu F, Zhu J B, Ge S, Wang W Z, Xu H T, Xu R, Wu Y L, Ma Z Q, Hong F, Jiang Z M 2016 Adv. Energy Mater. 6 1600814Google Scholar

    [25]

    曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏 2016 物理学报 65 188801Google Scholar

    Cao R N, Xu F, Zhu J B, Ge S, Wang W Z, Xu H T, Xu R, Wu Y L, Ma Z Q, Hong F, Jiang Z M 2016 Acta Phys. Sin. 65 188801Google Scholar

    [26]

    Wang X J, Ran X Q, Liu X T, Gu H, Zuo S W, Hui W, Lu H, Sun B, Gao X Y, Zhang J, Xia Y D, Chen Y H, Huang W 2020 Angew. Chem. Int. Edit. 59 13354Google Scholar

    [27]

    Hong F, Li Y, Xiang W, Liu X, Jiang Z M, Ma Z Q, Xu F 2021 Chem. Lett. 50 1500Google Scholar

    [28]

    Chao L F, Xia Y D, Li B X, Xing G C, Chen Y H, Huang W 2019 Chem 5 995Google Scholar

    [29]

    Haque M A, Troughton J, Baran D 2020 Adv. Energy Mater. 10 1902762Google Scholar

    [30]

    Xu F, Wang X, Li Y, Jiang B, Dong Z R, Yang Z C, Kang J X, Shu X, Jiang Z M, Hong F, Xu R, Ma Z Q, Chen T, Xu Z, Xu H T 2022 Adv. Opt. Mater. 10 2200930Google Scholar

    [31]

    Xue Q F, Bai Y, Liu M Y, Xia R X, Hu Z C, Chen Z M, Jiang X F, Huang F, Yang S H, Matsuo Y, Yip H L, Cao Y 2017 Adv. Energy Mater. 7 1602333Google Scholar

    [32]

    Gau D L, Galain I, Aguiar I, Marotti R E 2023 J. Lumines. 257 119765Google Scholar

    [33]

    Yang B, Dyck O, Poplawsky J, Keum J, Puretzky A, Das S, Ivanov I, Rouleau C, Duscher G, Geohegan D, Xiao K 2015 J. Am. Chem. Soc. 137 9210Google Scholar

    [34]

    Zhu Z K, Shang J T, Tang G Q, Wang Z, Cui X X, Jin J J, Zhou Y, Zhang X, Zhang D, Liu X W, Tai Q D 2023 Chem. Eng. J. 454 140163Google Scholar

    [35]

    Wang A L, Wang J W, Niu X B, Zuo C T, Hao F, Ding L M 2022 InfoMat 4 e12263Google Scholar

    [36]

    Guo Q, Dai Z, Dong C Q, Ding Y J, Jiang N Z, Wang Z B, Gao L, Duan C, Guo Q, Zhou E R 2023 Chem. Eng. J. 461 142025Google Scholar

    [37]

    Jeong M J, Jeon S W, Kim S Y, Noh J H 2023 Adv. Energy Mater. 13 2300698Google Scholar

    [38]

    Mali S S, Patil J V, Shinde P S, de Miguel G, Hong C K 2021 Matter 4 635Google Scholar

    [39]

    Patil J V, Mali S S, Sadale S B, Hong C K 2023 Inorg. Chem. Front. 10 3213

    [40]

    Hu Y Q, Cai L J, Xu Z, Wang Z, Zhou Y F, Sun G P, Sun T M, Qi Y B, Zhang S F, Tang Y F 2023 Inorg. Chem. 62 5408Google Scholar

    [41]

    Bahadur J, Ryu J, Pandey P, Cho S W, Cho J S, Kang D W 2023 Nanoscale 15 3850Google Scholar

  • [1] Wan Cheng-Liang, Pan Yu-Zhou, Zhu Li-Ping, Zhang Hao-Wen, Zhao Zhuo-Yan, Yuan Hua, Li Peng-Fei, Fan Xu-Hong, Sun Wen-Sheng, Du Zhan-Hui, Chen Qian, Cui Ying, Liao Tian-Fa, Wei Xiao-Hui, Wang Tian-Qi, Chen Xi-Men, Li Gong-Ping, Reinhold Schuch, Zhang Hong-Qiang. Production and Measurement of MeV Proton Microbeams in Atmospheric Environment Based on Glass Capillary. Acta Physica Sinica, doi: 10.7498/aps.73.20240301
    [2] Wang Song, Zhou Chuang, Li Su-Wen, Mou Fu-Sheng. Method of measuring atmospheric CO2 based on Fabry-Perot interferometer. Acta Physica Sinica, doi: 10.7498/aps.73.20231224
    [3] Wang Gui-Qiang, Wang Dong-Sheng, Bi Jia-Yu, Chang Jia-Run, Meng Fan-Ning. Tailoring of CsPbIBr2 perovskite crystallization via phenylthiourea for stable and efficiency perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.72.20230593
    [4] Sun Xue, Huang Feng, Liu Gui-Xiong, Su Zi-Sheng. Effect of nano-nucleation sites assisted crystallization on performance of perovskite photodetector. Acta Physica Sinica, doi: 10.7498/aps.71.20220189
    [5] Hu Zi-Ting, Shu Xin, Wang Xiang, Li Yue, Xu Run, Hong Feng, Ma Zhong-Quan, Jiang Zui-Min, Xu Fei. Air-stable CsPbIBr2 photodetector via dual-ligand-assisted solution strategy. Acta Physica Sinica, doi: 10.7498/aps.71.20212143
    [6] Wu Tian, Yao Meng-Li, Long Meng-Qiu. First principle calculations of interface interactions and photoelectric properties of perovskite CsPbX3 (X=Cl, Br, I) and penta-graphene van der Waals heterostructures. Acta Physica Sinica, doi: 10.7498/aps.70.20201246
    [7] Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang. Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.69.20200555
    [8] Liu Xiao-Min, Li Yi-Hui, Wang Xing-Tao, Zhao Yi-Xin. Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI2Br perovskite. Acta Physica Sinica, doi: 10.7498/aps.68.20190303
    [9] Cheng Jing-Yun, Kang Chao-Yang, Zong Hai-Tao, Cao Guo-Hua, Li Ming. Structural and photoelectrical properties of AZO thin films improved by Ag buffer layers. Acta Physica Sinica, doi: 10.7498/aps.66.027702
    [10] Shi Xiao-Hui, Xu Ke-Jing. The preparation of high-performance FTO thin film by Sol-Gel-evaporation method. Acta Physica Sinica, doi: 10.7498/aps.65.138101
    [11] Kang Xiao-Wei, Chen Long, Chen Jie, Sheng Zheng-Ming. Femtosecond laser ablation of an aluminum target in air. Acta Physica Sinica, doi: 10.7498/aps.65.055204
    [12] Tan Yi, Geng Chao, Li Xin-Yang, Luo Wen, Luo Qi. Experimental research of boresight error correction using returning signals from the illuminated targets through atmosphere. Acta Physica Sinica, doi: 10.7498/aps.64.024216
    [13] Shi Jiu-Lin, Guo Peng-Feng, Huang Yu, Qian Jia-Cheng, Wang Hong-Peng, Liu Juan, He Xing-Dao. Influences of temperature, humidity and pressure on the attenuation characteristics of laser beam in water. Acta Physica Sinica, doi: 10.7498/aps.64.024215
    [14] Huang Li-Jing, Ren Nai-Fei, Li Bao-Jia, Zhou Ming. Effects of laser irradiation on the photoelectric properties of thermal-annealed metal/fluorine-doped tin oxide transparent conductive films. Acta Physica Sinica, doi: 10.7498/aps.64.034211
    [15] Hou Qing-Yu, Lv Zhi-Yuan, Zhao Chun-Wang. Effects of Nb doping concentration on TiO2 electricel conductivity and optical performance. Acta Physica Sinica, doi: 10.7498/aps.64.017201
    [16] Zheng Ying-Ying, Deng Hai-Tao, Wan Jing, Li Chao-Rong. Bandgap energy tuning and photoelectrical properties of self-assembly quantum well structure in organic-inorganic hybrid perovskites. Acta Physica Sinica, doi: 10.7498/aps.60.067306
    [17] Zeng Le-Gui, Liu Fa-Min, Zhong Wen-Wu, Ding Peng, Cai Lu-Gang, Zhou Chuan-Cang. Preparationand structure and optical-electrical properties of the Nb/SnO2 composite thin film. Acta Physica Sinica, doi: 10.7498/aps.60.038203
    [18] Song Xue-Yun, Zhang Jun-Bing, Zeng Xiang-Hua, Dong Ya-Juan. Effects of electrode shape on the properties of GaN-based light-emitting diode. Acta Physica Sinica, doi: 10.7498/aps.59.4989
    [19] Fang Fang, Zheng Shi-You, Zhou Guang-You, Chen Guo-Rong, Sun Da-Lin. Hydrogen-induced changes in optical and electrical properties of LaMg2Ni alloy film. Acta Physica Sinica, doi: 10.7498/aps.57.3813
    [20] Xu Jin-Bao, Zheng Yu-Feng, Li Jin, Sun Yan-Fei, Wu Rong. The structural optical and electrical properties of films prepared by screen print. Acta Physica Sinica, doi: 10.7498/aps.53.3229
Metrics
  • Abstract views:  380
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2024
  • Accepted Date:  19 February 2024
  • Available Online:  08 March 2024

/

返回文章
返回