搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nb高掺杂量对锐钛矿TiO2导电和光学性能影响

侯清玉 吕致远 赵春旺

Nb高掺杂量对锐钛矿TiO2导电和光学性能影响

侯清玉, 吕致远, 赵春旺
PDF
导出引用
  • 目前, 在Nb高掺杂量摩尔数分别为0.050和0.0625的条件下, 对掺杂体系锐钛矿TiO2电阻最低存在相反的两种实验结果都有文献报道. 为解决这个矛盾, 本文采用基于密度泛函理论的平面波超软赝势方法, 计算了纯的单胞和三种不同Nb高掺杂量对锐钛矿Ti1-xNbxO2 (x=0.03125, 0.050, 0.0625)超胞的能带结构分布、态密度分布和光学性质. 结果表明, 在本文限定掺杂量的条件下, Nb掺杂量越增加, 掺杂体系的体积越增加, 总能量越升高, 稳定性越下降, 形成能越升高, 掺杂越难, 相对自由电子浓度越增加, 电子有效质量越增加, 电子迁移率越减小, 电子电导率越减小, 最小光学带隙越变宽, 吸收光谱和反射率向低能方向移动越显著, 透射率越增加. 计算结果与实验结果相吻合.
    • 基金项目: 国家自然科学基金(批准号:61366008, 51261017)、教育部“春晖计划”项目和内蒙古自治区高等学校科学研究项目(批准号:NJZZ13099)资助的课题.
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Gelover S, Mondragón P, Jiménez A 2004 J. Photoch. Photobio. A 165 241

    [3]

    Herrmann J M, Guillard C, Disdier J, Lehaut C, Malato S, Blanco 2002 J, App. Catal. B: Environ. 35 281

    [4]

    Li J J, Li B, Peng Q M, Zhou J, Li L T 2014 Chin. Phys. B 23 098104

    [5]

    Zhao L, Han J H, Li R P, Wang L G, Huang M J 2013 Chin. Phys. B 22 124207

    [6]

    Zhang S X, Kundaliya D C, Yu W, Dhar S, Young S Y, Salamanca R L G, Ogale S B, Vispute R D, Venkatesan T 2007 J. Appl. Phys. 102 013701

    [7]

    Sato Y, Akizuki H, Kamiyama T, Shigesato Y 2008 Thin. Solid. Films 516 5758

    [8]

    Furubayashi Y, Yamada N, Hirose Y, Yamamoto Y, Otani M 2007 J. Appl. Phys. 101 093705

    [9]

    Zhang R S, Liu Y, Gao Q, Teng F, Songa C L, Wang W, Han G R 2011 J. Alloy. Compd. 509 9178

    [10]

    Lee H Y, Robertson J 2013 J. Appl. Phys. 113 213706

    [11]

    Hitosugi T, Yamada N, Nakao S, Hirose Y, Hasegawa T 2010 Phys. Status. Solidi. A 207 1529

    [12]

    L X J, Mou X L, Wu J J, Zhang D W, Zhang L L, Huang F Q, Xu F F, Huang S M 2010 Adv. Funct. Mater. 20 509

    [13]

    Kaleji B K, Mamoory R S, Fujishima A 2012 Mater. Chem. Phys. 132 210

    [14]

    Burdett J K, Hughbanks T 1987 J. Am. Chem. Soc. 109 3639

    [15]

    Archana P S, Jose R, Jin T M, Vijila C, Yusoff M M, Ramakrishna S 2010 J. Am. Ceram. Soc. 93 4096

    [16]

    Furubayashi Y, Yamada N, Hirose Y, Yamamoto Y, Otani M 2007 J. Appl. Phys. t 101 093705

    [17]

    Kaleji B K, Mamoory R S, Fujishima A 2012 Mater. Chem. Phys. 132 210

    [18]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [19]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumn ong S 2006 Phys. Rev. B 73 125205

    [20]

    Tang H, Prasad K, Sanjinès R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042

    [21]

    Yang K S, Da Y, Huang B B 2008 Chem. Phys. Lett. 456 71

    [22]

    Lu J G, Fujita S, Kawaharamura T T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [23]

    Hirose Y, Yamada N, Nakao S, Hitosugi T, Shimada T, Hasegawa T 2009 Phys. Rev. B 79 16518

    [24]

    Huy H A, Aradi B, Frauenheim T, Deák P 2012 J. Appl. Phys. 112 016103

    [25]

    Furubayashi Y, Yamada N, Hirose Y, Yamamoto Y, Otani M, Hitosugi T, Shimada T, Hasegawa T 2007 J. Appl. Phys. 101 093705

    [26]

    Liu J M, Zhao X R, Duan L B, Cao M M, Sun H N, Shao J F, Chen S A, Xie H Y, Chang X, Chen C L 2011 Appl. Surf. Sci. 257 10156

    [27]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi' an: Xi' an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生1998半导体物理(西安: 西安交通大学出版社)第103页]

    [28]

    Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin Phys. B 19 117102

    [29]

    Eucken A, Biichner U A 1934 Z. Phys. Chem. B 27 321

    [30]

    Roberts S 1949 Phys. Rev. 76 1215

    [31]

    Lu J G, Fujita S, Kawaharamura T T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [32]

    Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science press) p140-141 (in Chinese) [沈学础2002半导体光谱和光学性质(第二版) (北京: 科学出版社)第140–141页]

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Gelover S, Mondragón P, Jiménez A 2004 J. Photoch. Photobio. A 165 241

    [3]

    Herrmann J M, Guillard C, Disdier J, Lehaut C, Malato S, Blanco 2002 J, App. Catal. B: Environ. 35 281

    [4]

    Li J J, Li B, Peng Q M, Zhou J, Li L T 2014 Chin. Phys. B 23 098104

    [5]

    Zhao L, Han J H, Li R P, Wang L G, Huang M J 2013 Chin. Phys. B 22 124207

    [6]

    Zhang S X, Kundaliya D C, Yu W, Dhar S, Young S Y, Salamanca R L G, Ogale S B, Vispute R D, Venkatesan T 2007 J. Appl. Phys. 102 013701

    [7]

    Sato Y, Akizuki H, Kamiyama T, Shigesato Y 2008 Thin. Solid. Films 516 5758

    [8]

    Furubayashi Y, Yamada N, Hirose Y, Yamamoto Y, Otani M 2007 J. Appl. Phys. 101 093705

    [9]

    Zhang R S, Liu Y, Gao Q, Teng F, Songa C L, Wang W, Han G R 2011 J. Alloy. Compd. 509 9178

    [10]

    Lee H Y, Robertson J 2013 J. Appl. Phys. 113 213706

    [11]

    Hitosugi T, Yamada N, Nakao S, Hirose Y, Hasegawa T 2010 Phys. Status. Solidi. A 207 1529

    [12]

    L X J, Mou X L, Wu J J, Zhang D W, Zhang L L, Huang F Q, Xu F F, Huang S M 2010 Adv. Funct. Mater. 20 509

    [13]

    Kaleji B K, Mamoory R S, Fujishima A 2012 Mater. Chem. Phys. 132 210

    [14]

    Burdett J K, Hughbanks T 1987 J. Am. Chem. Soc. 109 3639

    [15]

    Archana P S, Jose R, Jin T M, Vijila C, Yusoff M M, Ramakrishna S 2010 J. Am. Ceram. Soc. 93 4096

    [16]

    Furubayashi Y, Yamada N, Hirose Y, Yamamoto Y, Otani M 2007 J. Appl. Phys. t 101 093705

    [17]

    Kaleji B K, Mamoory R S, Fujishima A 2012 Mater. Chem. Phys. 132 210

    [18]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [19]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumn ong S 2006 Phys. Rev. B 73 125205

    [20]

    Tang H, Prasad K, Sanjinès R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042

    [21]

    Yang K S, Da Y, Huang B B 2008 Chem. Phys. Lett. 456 71

    [22]

    Lu J G, Fujita S, Kawaharamura T T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [23]

    Hirose Y, Yamada N, Nakao S, Hitosugi T, Shimada T, Hasegawa T 2009 Phys. Rev. B 79 16518

    [24]

    Huy H A, Aradi B, Frauenheim T, Deák P 2012 J. Appl. Phys. 112 016103

    [25]

    Furubayashi Y, Yamada N, Hirose Y, Yamamoto Y, Otani M, Hitosugi T, Shimada T, Hasegawa T 2007 J. Appl. Phys. 101 093705

    [26]

    Liu J M, Zhao X R, Duan L B, Cao M M, Sun H N, Shao J F, Chen S A, Xie H Y, Chang X, Chen C L 2011 Appl. Surf. Sci. 257 10156

    [27]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi' an: Xi' an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生1998半导体物理(西安: 西安交通大学出版社)第103页]

    [28]

    Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin Phys. B 19 117102

    [29]

    Eucken A, Biichner U A 1934 Z. Phys. Chem. B 27 321

    [30]

    Roberts S 1949 Phys. Rev. 76 1215

    [31]

    Lu J G, Fujita S, Kawaharamura T T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [32]

    Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science press) p140-141 (in Chinese) [沈学础2002半导体光谱和光学性质(第二版) (北京: 科学出版社)第140–141页]

  • [1] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [2] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [3] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [4] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl,Br,I)与五环石墨烯范德华异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20201246
    [5] 曾乐贵, 刘发民, 钟文武, 丁芃, 蔡鲁刚, 周传仓. Nb/SnO2复合薄膜的制备、结构及光电性能. 物理学报, 2011, 60(3): 038203. doi: 10.7498/aps.60.038203
    [6] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能. 物理学报, 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
    [7] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究. 物理学报, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [8] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [9] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究 . 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [10] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [12] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [13] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析. 物理学报, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [14] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [15] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [16] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [17] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [18] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究. 物理学报, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [19] 刘飞, 文志鹏. Zr, Nb, V在α-Fe(C)中的占位、电子结构及键合作用的第一性原理研究. 物理学报, 2019, 68(13): 137101. doi: 10.7498/aps.68.20182282
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1069
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-09
  • 修回日期:  2014-09-05
  • 刊出日期:  2015-01-05

Nb高掺杂量对锐钛矿TiO2导电和光学性能影响

  • 1. 内蒙古工业大学理学院物理系, 呼和浩特 010051
    基金项目: 

    国家自然科学基金(批准号:61366008, 51261017)、教育部“春晖计划”项目和内蒙古自治区高等学校科学研究项目(批准号:NJZZ13099)资助的课题.

摘要: 目前, 在Nb高掺杂量摩尔数分别为0.050和0.0625的条件下, 对掺杂体系锐钛矿TiO2电阻最低存在相反的两种实验结果都有文献报道. 为解决这个矛盾, 本文采用基于密度泛函理论的平面波超软赝势方法, 计算了纯的单胞和三种不同Nb高掺杂量对锐钛矿Ti1-xNbxO2 (x=0.03125, 0.050, 0.0625)超胞的能带结构分布、态密度分布和光学性质. 结果表明, 在本文限定掺杂量的条件下, Nb掺杂量越增加, 掺杂体系的体积越增加, 总能量越升高, 稳定性越下降, 形成能越升高, 掺杂越难, 相对自由电子浓度越增加, 电子有效质量越增加, 电子迁移率越减小, 电子电导率越减小, 最小光学带隙越变宽, 吸收光谱和反射率向低能方向移动越显著, 透射率越增加. 计算结果与实验结果相吻合.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回