搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基二氧化钒相变薄膜电学特性研究

熊瑛 文岐业 田伟 毛淇 陈智 杨青慧 荆玉兰

硅基二氧化钒相变薄膜电学特性研究

熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰
PDF
导出引用
导出核心图
  • 本文以原子层沉积超薄氧化铝(Al2 O3)为过渡层, 采用射频反应磁控溅射法在硅半导体基片上制备了颗粒致密并具有(011)择优取向的二氧化钒(VO2)薄膜. 该薄膜具有显著的绝缘体金属相变特性, 相变电阻变化超过3 个数量级, 热滞回线宽度约为6℃. 基于VO2薄膜构建了平面二端器件并测试了不同温度下I-V曲线, 观测到超过2个数量级的电流跃迁幅度, 显示了优越的电致相变特性. 室温下电致相变阈值电压为8.6 V, 电致相变弛豫电压宽度约0.1 V. 随着温度升高到60℃, 其电致相变所需要的阈值电压减小到2.7 V. 本实验制备的VO2薄膜在光电存储、开关、太赫兹调控器件中具有广泛的应用价值.
    • 基金项目: 国家自然科学基金重点项目(批准号: 61131005), 教育部科学技术研究重大项目(批准号: 313013), 国家高技术研究发展计划(批准号: 2011AA010204), 教育部新世纪优秀人才资助计划(批准号: NCET-11-0068), 四川省杰出青年学术技术带头人计划(批准号: 2011JQ0001), 高校博士点专项科研基金(批准号: 20110185130002)资助的课题.
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lysenko S, Rua A J, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512

    [3]

    Guzman G, Beteille F, Morineau R, Livage J 1996 J. Mater. Chem. 6 505

    [4]

    Ko C and Ramanathan S 2008 Appl. Phys. Lett. 93 252101

    [5]

    Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim J W L, Khanal D R, Ogletree D F, Grossman J C, Wu J 2009 Nat. Nanotechnol. 4 732

    [6]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, BernussiA, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 0535339

    [7]

    Ruzmetov D, Zawilski K T, Narayanamurti V, and Ramanathana S 2007 Journal of Appl. Phys. 102 13715

    [8]

    Kucharczy k D, Niklew ski T 1979 J. Appl. Cryst. 12 370

    [9]

    Zylbersztejn A Mott N F 1975 Phys. Rev. B 11 4383

    [10]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [11]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin, SSP 2013 Science 339 6126

    [12]

    Okimura K, Sakai J, Ramanathan S 2010 Journal of Applied Physics 107 063503

    [13]

    Wu T L, Whittaker L, Banerjee S, and Sambandamurthy G 2011 Phys. Rev. B 83 073101

    [14]

    Seo G, Kim B J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Device Lett. 32 1582

    [15]

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Qiu D H, Li S, Jing Y L, Zhang H W 2014 Chin. Phys. B 23 047803

    [16]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [17]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837

    [18]

    Zhou Y, Chen X N, Ko Changhyun, Yang Z, Mouli C, Ramanathan S 2013 IEEE Electron Device Lett. 34 220

    [19]

    Tu K N, Ziegler J F, Kircher C J 1973 Appl. Phys. Lett. 23 493

    [20]

    Yuan N Y, Li J H, Li G, Chen X S 2006 Thin Solid Films 515 1275

    [21]

    Wang L X, Li J P, He X L, Gao X G 2006 Acta Phys. Sin. 55 6 (in Chinese) [王利霞, 李建平, 何秀丽, 高晓光2006物理学报55 6]

    [22]

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese) [邱东鸿, 文岐业, 杨青慧, 陈智,荆玉兰, 张怀武 2013 物理学报 62 217201]

    [23]

    Fabien Béteille, Léo Mazerolles 1999 Materials Research Bulletin 34 2121

    [24]

    Borek M, Qian F, N agabushnam V, Singh R K 1993 Appl. Phys. Lett. 63 3288

    [25]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [26]

    Crunteanu A, Givernaud J, Leroy J, Mardivirin D, Champeaux C, OrliangesJ C, Catherinot A, Blondy P 2010 Sci. Technol. Adv. Mater. 11 065002

    [27]

    Dumas-Bouchiat F, Champeaux C, Catherinot A, Crunteanu A, Blondy P 2007 Appl. Phys. Lett. 91 223505

    [28]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B-Condensed Matter 369 1

    [29]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lysenko S, Rua A J, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512

    [3]

    Guzman G, Beteille F, Morineau R, Livage J 1996 J. Mater. Chem. 6 505

    [4]

    Ko C and Ramanathan S 2008 Appl. Phys. Lett. 93 252101

    [5]

    Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim J W L, Khanal D R, Ogletree D F, Grossman J C, Wu J 2009 Nat. Nanotechnol. 4 732

    [6]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, BernussiA, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 0535339

    [7]

    Ruzmetov D, Zawilski K T, Narayanamurti V, and Ramanathana S 2007 Journal of Appl. Phys. 102 13715

    [8]

    Kucharczy k D, Niklew ski T 1979 J. Appl. Cryst. 12 370

    [9]

    Zylbersztejn A Mott N F 1975 Phys. Rev. B 11 4383

    [10]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [11]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin, SSP 2013 Science 339 6126

    [12]

    Okimura K, Sakai J, Ramanathan S 2010 Journal of Applied Physics 107 063503

    [13]

    Wu T L, Whittaker L, Banerjee S, and Sambandamurthy G 2011 Phys. Rev. B 83 073101

    [14]

    Seo G, Kim B J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Device Lett. 32 1582

    [15]

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Qiu D H, Li S, Jing Y L, Zhang H W 2014 Chin. Phys. B 23 047803

    [16]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [17]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837

    [18]

    Zhou Y, Chen X N, Ko Changhyun, Yang Z, Mouli C, Ramanathan S 2013 IEEE Electron Device Lett. 34 220

    [19]

    Tu K N, Ziegler J F, Kircher C J 1973 Appl. Phys. Lett. 23 493

    [20]

    Yuan N Y, Li J H, Li G, Chen X S 2006 Thin Solid Films 515 1275

    [21]

    Wang L X, Li J P, He X L, Gao X G 2006 Acta Phys. Sin. 55 6 (in Chinese) [王利霞, 李建平, 何秀丽, 高晓光2006物理学报55 6]

    [22]

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese) [邱东鸿, 文岐业, 杨青慧, 陈智,荆玉兰, 张怀武 2013 物理学报 62 217201]

    [23]

    Fabien Béteille, Léo Mazerolles 1999 Materials Research Bulletin 34 2121

    [24]

    Borek M, Qian F, N agabushnam V, Singh R K 1993 Appl. Phys. Lett. 63 3288

    [25]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [26]

    Crunteanu A, Givernaud J, Leroy J, Mardivirin D, Champeaux C, OrliangesJ C, Catherinot A, Blondy P 2010 Sci. Technol. Adv. Mater. 11 065002

    [27]

    Dumas-Bouchiat F, Champeaux C, Catherinot A, Crunteanu A, Blondy P 2007 Appl. Phys. Lett. 91 223505

    [28]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B-Condensed Matter 369 1

    [29]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

  • [1] 孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合. 电场诱导二氧化钒绝缘-金属相变的研究进展. 物理学报, 2019, 68(10): 107201. doi: 10.7498/aps.68.20190136
    [2] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理. 物理学报, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [3] 邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武. 金属Pt薄膜上二氧化钒的制备及其电致相变性能研究. 物理学报, 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [4] 何悦, 窦亚楠, 马晓光, 陈绍斌, 褚君浩. 热原子层沉积氧化铝对硅的钝化性能及热稳定性. 物理学报, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [5] 王利霞, 李建平, 何秀丽, 高晓光. 二氧化钒薄膜的低温制备及其性能研究. 物理学报, 2006, 55(6): 2846-2851. doi: 10.7498/aps.55.2846
    [6] 顾艳妮, 吴小山. 氧空穴导致二氧化钒低温相带隙变窄. 物理学报, 2017, 66(16): 163102. doi: 10.7498/aps.66.163102
    [7] 李晓溪, 贾天卿, 冯东海, 徐至展. 超短脉冲激光照射下氧化铝的烧蚀机理. 物理学报, 2004, 53(7): 2154-2158. doi: 10.7498/aps.53.2154
    [8] 胡明列, 柴路, 王清月, 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究. 物理学报, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [9] 张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒. 掺钨VO2薄膜的电致相变特性. 物理学报, 2017, 66(23): 238101. doi: 10.7498/aps.66.238101
    [10] 罗明海, 徐马记, 黄其伟, 李派, 何云斌. VO2金属-绝缘体相变机理的研究进展. 物理学报, 2016, 65(4): 047201. doi: 10.7498/aps.65.047201
    [11] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性. 物理学报, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [12] 郝如龙, 李毅, 刘飞, 孙瑶, 唐佳茵, 陈培祖, 蒋蔚, 伍征义, 徐婷婷, 方宝英, 王晓华, 肖寒. 基于FTO/VO2/FTO结构的VO2薄膜电压诱导相变光调制特性. 物理学报, 2015, 64(19): 198101. doi: 10.7498/aps.64.198101
    [13] 曾智江, 杨秋红, 徐 军. Cr3+:Al2O3透明多晶陶瓷光谱特性分析. 物理学报, 2005, 54(11): 5445-5449. doi: 10.7498/aps.54.5445
    [14] 娄昊楠, 陆昉, 王军转, 石卓琼, 章新栾, 左则文, 濮林, 张荣, 郑有炓, 施毅, 马恩. 掺铒Si/Al2O3多层结构中结晶形态对1.54 μm发光的影响. 物理学报, 2009, 58(6): 4243-4248. doi: 10.7498/aps.58.4243
    [15] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应. 物理学报, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [16] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应. 物理学报, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [17] 孙占峰, 贺红亮, 李平, 李庆忠. AD95陶瓷的层裂强度及冲击压缩损伤机理研究. 物理学报, 2012, 61(9): 096201. doi: 10.7498/aps.61.096201
    [18] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟. 物理学报, 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [19] 李琦, 章勇. 基于Al2O3/MoO3复合阳极缓冲层的倒置聚合物太阳能电池的研究. 物理学报, 2018, 67(6): 067201. doi: 10.7498/aps.67.20172311
    [20] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究. 物理学报, 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1212
  • PDF下载量:  711
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-14
  • 修回日期:  2014-09-05
  • 刊出日期:  2015-01-05

硅基二氧化钒相变薄膜电学特性研究

  • 1. 电子科技大学, 电子薄膜与集成器件国家重点实验室, 成都 610054;
  • 2. 电子科技大学, 通信抗干扰技术国家级重点实验室, 成都 610054
    基金项目: 

    国家自然科学基金重点项目(批准号: 61131005), 教育部科学技术研究重大项目(批准号: 313013), 国家高技术研究发展计划(批准号: 2011AA010204), 教育部新世纪优秀人才资助计划(批准号: NCET-11-0068), 四川省杰出青年学术技术带头人计划(批准号: 2011JQ0001), 高校博士点专项科研基金(批准号: 20110185130002)资助的课题.

摘要: 本文以原子层沉积超薄氧化铝(Al2 O3)为过渡层, 采用射频反应磁控溅射法在硅半导体基片上制备了颗粒致密并具有(011)择优取向的二氧化钒(VO2)薄膜. 该薄膜具有显著的绝缘体金属相变特性, 相变电阻变化超过3 个数量级, 热滞回线宽度约为6℃. 基于VO2薄膜构建了平面二端器件并测试了不同温度下I-V曲线, 观测到超过2个数量级的电流跃迁幅度, 显示了优越的电致相变特性. 室温下电致相变阈值电压为8.6 V, 电致相变弛豫电压宽度约0.1 V. 随着温度升高到60℃, 其电致相变所需要的阈值电压减小到2.7 V. 本实验制备的VO2薄膜在光电存储、开关、太赫兹调控器件中具有广泛的应用价值.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回