Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The evolution law of KTP SHG conversion efficiency in special repetition rate

Xie Xu-Dong Zhu Qi-Hua Zhang Qiu-Hui Feng Guo-Ying Han Jing-Hua Li Bin-Hou

The evolution law of KTP SHG conversion efficiency in special repetition rate

Xie Xu-Dong, Zhu Qi-Hua, Zhang Qiu-Hui, Feng Guo-Ying, Han Jing-Hua, Li Bin-Hou
PDF
Get Citation
  • Based on the conduction band electron density and the expression of the effective dielectric function, the absorption coefficient at 532nm of KTP crystal is deduced. The evolution law of conduction band electron density, absorption coefficient and second harmonic generation (SHG) conversion efficiency are comparatively studied. The results are as follows. The 532 nm absorption coefficient of KTP crystal is increasing with conduction band electron density, and the SHG conversion efficiency is decreasing with conduction band electron density. When the power density of fundamental frequency laser is a fixed value, conduction band electron density shows accumulation effects a different repetition rates, which caused the 532 nm transmission and the SHG conversion efficiency of KTP crystal to vary exponentially with acting time, and the accumulation effect is increasing obviously with repetition rate, but conduction band electron density and absorption coefficient approach thir steady values.
    • Funds:
    [1]

    Boulanger B, Fejer M M, Blachman R, Bordui P F 1994 Appl. Phys. Lett. 65 2401

    [2]

    Tyminski J K 1991 J. Appl. Phys. 70 5570

    [3]

    Edwards G J, Scripsick M P, Halliburton L E, Belt R F 1992 Phys. Rev. B 48 6884

    [4]

    Loiacono G M, Loiacono D N, McGee T, Babb M 1992 J. Appl. Phys. 72 2705

    [5]

    Blachman R, Bordui P F, Fejer M M 1994 Appl. Phys. Lett. 64 1318

    [6]

    Satyanarayan M N, Bhat H L, Srinivasan M R, Ayyub P, Multani M S 1995 Appl. Phys. Lett. 67 2810

    [7]

    Scripsick M P, Lolacono D N, Rottenberg J 1995 Appl. Phys. Lett. 66 3

    [8]

    Feve J P, Boulanger B, Marnier G, Albrecht H 1997 Appl. Phys. Lett. 70 277

    [9]

    Boulanger B, Rousseau I, Feve J P, Maglione M, Ménaert B, Marnier G IEEE J. Quantum Electronics 35 281

    [10]

    Chmel A E 1997 Materials Science and Engineering B 49 175

    [11]

    Han J h, Feng G Y, Yang L M, Zhang Q H, Xie X D, Zhu Q H, Zhou S H 2008 Acta Phys. Sin. 57 5558 (in Chinese) [韩敬华、 冯国英、 杨李茗、 张秋慧、 谢旭东、 朱启华、周寿桓 2008 物理学报 57 5558]

    [12]

    Ding H Z, Xing X S, Zhao R B 1996 Chin. Phys. 5 801

    [13]

    Xiao Z Y, Wang T Y, Luo W Y, Wang Z H 2008 Acta Phys. Sin. 57 2273 (in Chinese) [肖中银、 王廷云、 罗文芸、 王子华 2008物理学报 57 2273]

    [14]

    Chaffee P H, Ehrlich R B 1987 IEEE Laser and Elector Optics Soc. 25 18

    [15]

    Demos S G, Staggs M, Kozlowski M R 2002 Appl. Opt. 41 3628

    [16]

    Jia T Q, Chen H X, Huang M, Zhao F L, Li X X, Xu S Z, Sun H Y, Feng D H, Li C B, Wang X F 2006 Phys. Rev. B 73 54105

    [17]

    Wang K P, Fang C S, Zhang J X, Wang S L, Sun X, Gu Q T, Li Y P 2004 J. Synthetic Crys. 33 48 (in Chinese) [王坤鹏、 房昌水、 张建秀、 王圣来、 孙 洵、 顾庆天、 李义平 2004 人工晶体学报 33 48]

    [18]

    Fox M 2009 Optical properties of solids (Beijing: Science Press) p6

    [19]

    Casper R T, Jones S C, Braunlich P, Kelly P 1990 Nuclear Instruments and Methods in Physics Research Section B 46 231

    [20]

    Jones S C, Braunlich P, Casper R T, Shen X A, Kelly P 1989 Optical Engineering 28 1039

    [21]

    Qian S X, Wang G M 2002Nonlinear Optics-Principle and Progress (Shanghai: Fudan University Press) p58 (in Chinese) [钱世雄、 王恭明 2002 非线性光学原理与进展 (上海: 复旦大学出版社) 第58页]

  • [1]

    Boulanger B, Fejer M M, Blachman R, Bordui P F 1994 Appl. Phys. Lett. 65 2401

    [2]

    Tyminski J K 1991 J. Appl. Phys. 70 5570

    [3]

    Edwards G J, Scripsick M P, Halliburton L E, Belt R F 1992 Phys. Rev. B 48 6884

    [4]

    Loiacono G M, Loiacono D N, McGee T, Babb M 1992 J. Appl. Phys. 72 2705

    [5]

    Blachman R, Bordui P F, Fejer M M 1994 Appl. Phys. Lett. 64 1318

    [6]

    Satyanarayan M N, Bhat H L, Srinivasan M R, Ayyub P, Multani M S 1995 Appl. Phys. Lett. 67 2810

    [7]

    Scripsick M P, Lolacono D N, Rottenberg J 1995 Appl. Phys. Lett. 66 3

    [8]

    Feve J P, Boulanger B, Marnier G, Albrecht H 1997 Appl. Phys. Lett. 70 277

    [9]

    Boulanger B, Rousseau I, Feve J P, Maglione M, Ménaert B, Marnier G IEEE J. Quantum Electronics 35 281

    [10]

    Chmel A E 1997 Materials Science and Engineering B 49 175

    [11]

    Han J h, Feng G Y, Yang L M, Zhang Q H, Xie X D, Zhu Q H, Zhou S H 2008 Acta Phys. Sin. 57 5558 (in Chinese) [韩敬华、 冯国英、 杨李茗、 张秋慧、 谢旭东、 朱启华、周寿桓 2008 物理学报 57 5558]

    [12]

    Ding H Z, Xing X S, Zhao R B 1996 Chin. Phys. 5 801

    [13]

    Xiao Z Y, Wang T Y, Luo W Y, Wang Z H 2008 Acta Phys. Sin. 57 2273 (in Chinese) [肖中银、 王廷云、 罗文芸、 王子华 2008物理学报 57 2273]

    [14]

    Chaffee P H, Ehrlich R B 1987 IEEE Laser and Elector Optics Soc. 25 18

    [15]

    Demos S G, Staggs M, Kozlowski M R 2002 Appl. Opt. 41 3628

    [16]

    Jia T Q, Chen H X, Huang M, Zhao F L, Li X X, Xu S Z, Sun H Y, Feng D H, Li C B, Wang X F 2006 Phys. Rev. B 73 54105

    [17]

    Wang K P, Fang C S, Zhang J X, Wang S L, Sun X, Gu Q T, Li Y P 2004 J. Synthetic Crys. 33 48 (in Chinese) [王坤鹏、 房昌水、 张建秀、 王圣来、 孙 洵、 顾庆天、 李义平 2004 人工晶体学报 33 48]

    [18]

    Fox M 2009 Optical properties of solids (Beijing: Science Press) p6

    [19]

    Casper R T, Jones S C, Braunlich P, Kelly P 1990 Nuclear Instruments and Methods in Physics Research Section B 46 231

    [20]

    Jones S C, Braunlich P, Casper R T, Shen X A, Kelly P 1989 Optical Engineering 28 1039

    [21]

    Qian S X, Wang G M 2002Nonlinear Optics-Principle and Progress (Shanghai: Fudan University Press) p58 (in Chinese) [钱世雄、 王恭明 2002 非线性光学原理与进展 (上海: 复旦大学出版社) 第58页]

  • [1] Peng Qin-Jun, Bo Yong, Cui Da-Fu, Xu Zu-Yan, Cui Qian-Jin, Xu Yi-Ting, Zong Nan, Lu Yuan-Fu, Cheng Xian-Kun. High power 2μm intracavity doubly resonant optical parametric oscillator. Acta Physica Sinica, 2009, 58(3): 1715-1718. doi: 10.7498/aps.58.1715
    [2] Zhao Jia, Cui Ming-Qi, Zhao Yi-Dong, Zhou Ke-Jin, Zheng Lei, Zhu Jie, Sun Li-Juan, Chen Kai, Ma Chen-Yan. Dispersing performance of KTP(011) crystal. Acta Physica Sinica, 2011, 60(6): 066102. doi: 10.7498/aps.60.066102
    [3] Li Xiao-Ming, Shen Xue-Ju, Liu Xun, Wang Lin. Study on temperature adaptability extension of KTP frequency-doubling device. Acta Physica Sinica, 2015, 64(9): 094205. doi: 10.7498/aps.64.094205
    [4] Hu Miao, Ge Jian-Hong, Chen Jun, Liu Chong. The relation between UV conversion efficiency and focused green Gaussian beam waist in BBO crystal. Acta Physica Sinica, 2009, 58(3): 1719-1725. doi: 10.7498/aps.58.1719
    [5] Zhang Kong, Bai Jian-Dong, He Jun, Wang Jun-Min. Influence of laser linewidth on the conversion efficiency of single-pass frequency doubling with a PPMgO: LN crystal. Acta Physica Sinica, 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [6] Wang Tao, Qian Lie-Jia, Lv Tie-Zheng, Lu Xin, Wei Zhi-Yi, Zhang Jie. . Acta Physica Sinica, 2002, 51(6): 1268-1271. doi: 10.7498/aps.51.1268
    [7] LIU YAO-GANG, TIAN LIANG-GUANG, JIANG XIAO-LONG, LI RUN-SHEN, XU SHUN-SHENG. STUDY ON A SPECIAL DEFECT IN KTP CRYSTAL. Acta Physica Sinica, 1991, 40(3): 449-453. doi: 10.7498/aps.40.449
    [8] Zhang Yu-Ping, Zhang Hui-Yun, Wang Peng, Li Xi-Fu, Yao Jian-Quan, He Zhi-Hong. A 36 W intracavity-frequency-doubled diode-side-pumped Nd:YAG/KTP continuous wave green laser. Acta Physica Sinica, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [9] Li Rui-Ning, Lai Yin-Juan, Ma Xiao-Tao. . Acta Physica Sinica, 2002, 51(8): 1736-1738. doi: 10.7498/aps.51.1736
    [10] Yan Xiao-Juan, Li Zhi-Xin, Zhang Yong-Zhi, Wang Le, Hu Zhi-Yu, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. The Hansch-Couillaud frequency locking mechanism of dual-wavelength external cavity resonance system based on diffusion bonded KTP crystal. Acta Physica Sinica, 2011, 60(10): 104210. doi: 10.7498/aps.60.104210
  • Citation:
Metrics
  • Abstract views:  4089
  • PDF Downloads:  1009
  • Cited By: 0
Publishing process
  • Received Date:  29 October 2009
  • Accepted Date:  13 November 2009
  • Published Online:  15 August 2010

The evolution law of KTP SHG conversion efficiency in special repetition rate

  • 1. (1)China Academy of Engineering Physics, Mianyang 621900, China; (2)College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China

Abstract: Based on the conduction band electron density and the expression of the effective dielectric function, the absorption coefficient at 532nm of KTP crystal is deduced. The evolution law of conduction band electron density, absorption coefficient and second harmonic generation (SHG) conversion efficiency are comparatively studied. The results are as follows. The 532 nm absorption coefficient of KTP crystal is increasing with conduction band electron density, and the SHG conversion efficiency is decreasing with conduction band electron density. When the power density of fundamental frequency laser is a fixed value, conduction band electron density shows accumulation effects a different repetition rates, which caused the 532 nm transmission and the SHG conversion efficiency of KTP crystal to vary exponentially with acting time, and the accumulation effect is increasing obviously with repetition rate, but conduction band electron density and absorption coefficient approach thir steady values.

Reference (21)

Catalog

    /

    返回文章
    返回