Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the simulation and measurement of ring structures metamaterial absorber

Cheng Yong-Zhi Xiao Ting Yang He-Lin Xiao Bo-Xun

Study on the simulation and measurement of ring structures metamaterial absorber

Cheng Yong-Zhi, Xiao Ting, Yang He-Lin, Xiao Bo-Xun
PDF
Get Citation
  • In this paper, two kinds of ring-type microwave electric resonant structures were proposed, which were appropriately assembled with metal wires to form electromagnetic coupling units. The coupled structures have resonance response to the incident electromagnetic wave, and absorb the electric and magnetic fields strongly. We simulated these two kinds of coupled structures, and then optimized the simulation results to achieve the best absorption properties. The electromagnetic properties (the reflection coefficients S11 and the transmission coefficients S21) of metamaterial absorber sample were measured using free space method in microwave frequency from 8 to 12 GHz. At 10.7 GHz and 10.07 GHz, the absorptivity reaches 95% and 98%, respectively.
    • Funds:
    [1]

    Kock W E 1948 Bell. Syst. Tech. J 27 58

    [2]

    Veselago V G 1968 Sov .Phys. Usp. 10 509

    [3]

    Xiao S S, Shen L F, He S L 2004 IEEE Photonics Technology Letters 16 171

    [4]

    Leonhardt U 2006 Science 312 1777

    [5]

    Akalin T, Danglot J, Vanbesien O, Lippens D A 2002 IEEE Microwave and Wireless Components Letters 12 48

    [6]

    Landy N I, Sajuyigbe S, Mock J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [7]

    Lu J, Chen X Y, Wang J B 2008 Acta Phys. Sin. 57 7200 (in Chinese) [卢 俊、陈新邑、汪剑波 2008 物理学报 57 7200]

    [8]

    Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys. Sin. 58 506(in Chinese) [贾宏燕、高劲松、冯晓国、孙连春 2009 物理学报 58 506]

    [9]

    Avitzour Y, Yaroslav A, Urzhumov, Shvets G 2009 Phys. Rev. B 79 045131

    [10]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Optics Express 16 10

    [11]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [12]

    Smith D R, Pendry J B 2006 Opt. Soc. Am. B 23 391

    [13]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [14]

    Schuring D, Mock J J, Smith D R 2006 Appl. Phys. Lett. 88 041109

    [15]

    Zhang S Q, Shi Y L, Huang C G, Lian C C 2007 Acta Phys. Sin. 56 5508 (in Chinese) [张拴勤、石云龙、黄长庚、连长春 2007 物理学报 56 5508]

    [16]

    He Y F, Gong R Z, Wang X, Zhao Q 2008 Acta Phys. Sin. 57 5261 (in Chinese) [何燕飞、龚荣洲、王 鲜、赵 强 2008 物理学报 57 5261]

  • [1]

    Kock W E 1948 Bell. Syst. Tech. J 27 58

    [2]

    Veselago V G 1968 Sov .Phys. Usp. 10 509

    [3]

    Xiao S S, Shen L F, He S L 2004 IEEE Photonics Technology Letters 16 171

    [4]

    Leonhardt U 2006 Science 312 1777

    [5]

    Akalin T, Danglot J, Vanbesien O, Lippens D A 2002 IEEE Microwave and Wireless Components Letters 12 48

    [6]

    Landy N I, Sajuyigbe S, Mock J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [7]

    Lu J, Chen X Y, Wang J B 2008 Acta Phys. Sin. 57 7200 (in Chinese) [卢 俊、陈新邑、汪剑波 2008 物理学报 57 7200]

    [8]

    Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys. Sin. 58 506(in Chinese) [贾宏燕、高劲松、冯晓国、孙连春 2009 物理学报 58 506]

    [9]

    Avitzour Y, Yaroslav A, Urzhumov, Shvets G 2009 Phys. Rev. B 79 045131

    [10]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Optics Express 16 10

    [11]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [12]

    Smith D R, Pendry J B 2006 Opt. Soc. Am. B 23 391

    [13]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [14]

    Schuring D, Mock J J, Smith D R 2006 Appl. Phys. Lett. 88 041109

    [15]

    Zhang S Q, Shi Y L, Huang C G, Lian C C 2007 Acta Phys. Sin. 56 5508 (in Chinese) [张拴勤、石云龙、黄长庚、连长春 2007 物理学报 56 5508]

    [16]

    He Y F, Gong R Z, Wang X, Zhao Q 2008 Acta Phys. Sin. 57 5261 (in Chinese) [何燕飞、龚荣洲、王 鲜、赵 强 2008 物理学报 57 5261]

  • [1] Zhang Yan-Ping, Zhao Xiao-Peng, Bao Shi, Luo Chun-Rong. Dendritic metamaterial absorber based on the impedance matching. Acta Physica Sinica, 2010, 59(9): 6078-6083. doi: 10.7498/aps.59.6078
    [2] Liang Jing-Qiu, Liang Zhong-Zhu, Zhu Wan-Bin, Su Fa-Gang. Study on the surface morphology and absorptivity of light-absorbing materials. Acta Physica Sinica, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [3] Yan Xiao-Juan, Ma Wei-Guang, Tan Wei. Theoretical investigation of impedance matching in the process of sum-frequency generation in an external resonator. Acta Physica Sinica, 2016, 65(4): 044207. doi: 10.7498/aps.65.044207
    [4] Zhang Duan-Ming, Li Li, Li Zhi-Hua, Guan Li, Hou Si-Pu, Tan Xin-Yu. Variation of the target absorptance and target temperature distribution before melting in the pulsed laser ablation process. Acta Physica Sinica, 2005, 54(3): 1283-1289. doi: 10.7498/aps.54.1283
    [5] Wang Zheng, Zhao Xin-Jie, Zhou Tie-Ge, Yue Hong-Wei, Yan Shao-Lin, He Ming. Simulations of impedance matching and phase locking of Josephson junction arrays embedded in a Fabry-Perot resonator. Acta Physica Sinica, 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [6] LIN XIU-CHUAN, SHAO TIAN-MIN. LUMPED METHOD FOR THE MEASUREMENT OF LASER ABSORPTANCE OF MATERIALS . Acta Physica Sinica, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
    [7] Zhao Kai, Mu Zong-Xin, Zhang Jia-Liang. Dielectric layer equivalent capacitance and loading performance of a coaxial dielectric barrier discharge reactor. Acta Physica Sinica, 2014, 63(18): 185208. doi: 10.7498/aps.63.185208
    [8] Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Liu Kai-Ming, Yin Yi-Heng. Design and performance analysis of THz microcavity-enhanced graphene photodetector. Acta Physica Sinica, 2016, 65(16): 168101. doi: 10.7498/aps.65.168101
    [9] Wu Yang,  Chen Qi,  Xu Rui-Ying,  Ge Rui,  Zhang Biao,  Tao Xu,  Tu Xue-Cou,  Jia Xiao-Qing,  Zhang La-Bao,  Kang Lin,  Wu Pei-Heng. Optical properties of niobium nitride nanowires. Acta Physica Sinica, 2018, 67(24): 248501. doi: 10.7498/aps.67.20181646
    [10] Yue Song, Zhang Zhao-Chuan, Gao Dong-Ping. Injection-locking of magnetrons with matched impedance. Acta Physica Sinica, 2013, 62(17): 178401. doi: 10.7498/aps.62.178401
  • Citation:
Metrics
  • Abstract views:  4007
  • PDF Downloads:  1637
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2009
  • Accepted Date:  25 December 2009
  • Published Online:  15 August 2010

Study on the simulation and measurement of ring structures metamaterial absorber

  • 1. (1)College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079,China; (2)Engineering Geophysical Research Center, Yangtze University, Jingzhou 434023,China

Abstract: In this paper, two kinds of ring-type microwave electric resonant structures were proposed, which were appropriately assembled with metal wires to form electromagnetic coupling units. The coupled structures have resonance response to the incident electromagnetic wave, and absorb the electric and magnetic fields strongly. We simulated these two kinds of coupled structures, and then optimized the simulation results to achieve the best absorption properties. The electromagnetic properties (the reflection coefficients S11 and the transmission coefficients S21) of metamaterial absorber sample were measured using free space method in microwave frequency from 8 to 12 GHz. At 10.7 GHz and 10.07 GHz, the absorptivity reaches 95% and 98%, respectively.

Reference (16)

Catalog

    /

    返回文章
    返回