Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reversal behavior of optical absorption rate of bimetallic core-shell nanoparticles based on finite-difference time-domain method

Hong Wen-Peng Lan Jing-Rui Li Hao-Ran Li Bo-Yu Niu Xiao-Juan Li Yan

Citation:

Reversal behavior of optical absorption rate of bimetallic core-shell nanoparticles based on finite-difference time-domain method

Hong Wen-Peng, Lan Jing-Rui, Li Hao-Ran, Li Bo-Yu, Niu Xiao-Juan, Li Yan
PDF
HTML
Get Citation
  • The bimetallic nanoparticle can effectively integrate the physical and chemical properties of two metals and simultaneously exhibits the unique natures of each metal. It also serves as a good candidate for improving light scattering, photothermal conversion, plasmon resonance decay, and photon excitation. Investigating the optical properties of an individual nanoparticle can avoid the interaction between nanoparticles during experimental research, which allows us to more effectively analyze the interaction between the incident light and nanoparticles. In this work, the finite-difference time-domain method is used to study the spectral absorption characteristics of the plasmon bimetallic core-shell nanoparticles by calculating the spectroscopic properties, and also the distributions of the magnetic field, electric field, and absorption power during energy transmission and decaying. The results show that the resonance wavelength is red-shifted if the core diameter is increased. In addition, the absorption rate of Ag@Pt bimetallic nanoparticles is higher than that of pure Ag@Ag nanoparticles when the core diameter is bigger than 100 nm. This is because the strong shielding effect between the shell metal material and the core metal material leads the incident light to interact only with the outer atoms, resulting in resonance. Meanwhile, the plasmon of the Ag core decays faster than that of the Pt shell and more energies are transferred to the Pt shell. As a result, the surface of the Pt shell shows more concentrated magnetic and electric fields associated with an enlarged absorbing power. Moreover, the energy in the Ag core tends to transfer to the nearby Pt shell, which is characterized by the energy absorption in the Pt shell close to the Ag core, and is more concentrated. This paper provides theoretical guidance for designing plasmon bimetallic core-shell nanoparticles, thereby satisfying the demands for special spectral responses.
      Corresponding author: Li Hao-Ran, haoran@neepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52106195) and the “13th Five-Year Plan” for Science and Technology Research of the Education Department of Jilin Province, China (Grant No. JJKH20200106KJ)
    [1]

    Cao C, Zhao Z Y, Zhang Y M, Peng S 2020 J. Phys. D: Appl. Phys. 53 265103Google Scholar

    [2]

    刘海舟, 喻小强, 李金磊, 徐凝, 周林, 朱嘉 2019 中国科学: 物理学 力学 天文学 49 17Google Scholar

    Liu H Z, Yu X Q, Li J L, Xu N, Zhou L, Zhu J 2019 Sci China: Phys. Mech. Astron. 49 17Google Scholar

    [3]

    Kunwar S, Pandit S, Jeong J H, Lee J 2020 Nano-Micro Lett. 12 91

    [4]

    任益弘, 朱君, 李娜, 王各, 娄健 2020 激光杂志 41 1Google Scholar

    Ren Y H, Zhu J, Li N, Wang G, Lou J 2020 Laser J. 41 1Google Scholar

    [5]

    Wang T M, Tang G H, Du M 2020 Appl. Therm. Eng. 173 115182Google Scholar

    [6]

    殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田 2021 物理学报 70 024201Google Scholar

    Yin C, Lu C J, Da J, Zhang R G, Kan X F, Han Q B, Xu T 2021 Acta Phys. Sin. 70 024201Google Scholar

    [7]

    彭浩程, 葛成, 周婧, 陈鹏, 施毅, 张荣, 郑有炓 2020 光电子技术 40 176Google Scholar

    Peng H C, Ge C, Zhou J, Chen P, Shi Y, Zhang R, Zheng Y L 2020 Optoe. Technol. 40 176Google Scholar

    [8]

    Chen M J, He Y R, Wang X Z, Hu Y W 2018 Appl. Energy 211 735Google Scholar

    [9]

    Tunkara E, DeJarnette D, Saunders A E, Baldwin M, Otanicar T, Roberts K P 2019 Appl. Energy 252 113459Google Scholar

    [10]

    Yu X X, Xuan Y M 2018 Sol. Energy 160 200Google Scholar

    [11]

    刘兵, 宫辉力, 刘锐, 胡长文 2019 应用化学 36 939Google Scholar

    Liu B, Gong H L, Liu R, Hu C W 2019 Chin. J. Appl. Chem. 36 939Google Scholar

    [12]

    朱群志, 蒋瑜毅 2017 光散射学报 29 222Google Scholar

    Zhu Q Z, Jiang Y Y 2017 Chin. J. Light Scatt. 29 222Google Scholar

    [13]

    Manjavacas A, Liu J G, Kulkarni V, Nordlander P 2014 ACS Nano 8 7630Google Scholar

    [14]

    Linic S, Aslam U, Boerigter C, Morabito M 2015 Nat. Mater. 14 567Google Scholar

    [15]

    朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 物理学报 68 147304Google Scholar

    Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 147304Google Scholar

    [16]

    林丹丽, 董旭, 查刘生 2018 分析测试学报 37 599Google Scholar

    Lin D L, Dong X, Zha L S 2018 J. Instr. Anal. 37 599Google Scholar

    [17]

    Chavez S, Aslam U, Linic S 2018 ACS Energy Lett. 3 1590Google Scholar

    [18]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [19]

    Werner W S M, Glantschnig K, Ambroschdraxl C 2009 J. Phys. Chem. Ref. Data 38 1013Google Scholar

  • 图 1  Yee网格和电磁场分量分布

    Figure 1.  Yee grid and electromagnetic field component distribution.

    图 2  Ag@Ag, Ag@Pt, Pt@Ag纳米颗粒结构示意图

    Figure 2.  Structure diagrams of Ag@Ag, Ag@Pt, and Pt@Ag nanoparticles.

    图 3  模型验证

    Figure 3.  Model validation.

    图 4  壳层厚度为2 nm时不同核芯粒径纳米颗粒的吸收、散射和消光分数 (a) R = 10 nm, (b) R = 30 nm和(c) R = 50 nm的Ag@Ag纳米颗粒; (d) R = 10 nm, (e) R = 30 nm和(f) R = 50 nm的Ag@Pt纳米颗粒

    Figure 4.  Absorption, scattering, and extinction fraction of nanoparticles with a shell thickness of 2 nm and different core sizes: Ag@Ag nanoparticle with (a) R = 10 nm, (b) R = 30 nm, and (c) R = 50 nm; Ag@Pt nanoparticle with (d) R = 10 nm, (e) R = 30 nm, and (f) R = 50 nm.

    图 5  Ag@Ag, Pt@Pt, Ag@Pt纳米颗粒吸收率随壳层厚度的变化

    Figure 5.  Shell thickness-resolved absorption rate of Ag@Ag, Pt@Pt, and Ag@Pt nanoparticles.

    图 6  壳层厚度为2 nm时不同核芯粒径纳米颗粒吸收功率分布 (a) R = 90 nm的Ag@Ag纳米颗粒; (b) R = 90 nm的Ag@Pt纳米颗粒; (c) R = 160 nm的Ag@Ag纳米颗粒; (d) R = 160 nm的Ag@Pt纳米颗粒

    Figure 6.  Power absorption distributions of nanoparticles with a shell thickness of 2 nm and different core sizes: (a) Ag@Ag, (b) Ag@Pt nanoparticles with R = 90 nm; (c) Ag@Ag, (d) Ag@Pt nanoparticles with R = 160 nm.

    图 7  核芯粒径为20 nm时不同壳层厚度(0.5—4.0 nm)纳米颗粒光学特性 (a) Ag@Ag纳米颗粒吸收截面; (b) Ag@Ag纳米颗粒散射截面; (c) Ag@Pt纳米颗粒吸收截面; (d) Ag@Pt纳米颗粒散射截面

    Figure 7.  Optical characteristics of nanoparticles with a core size of 20 nm and shell thickness ranging from 0.5 to 4.0 nm: (a) Absorption and (b) scattering cross-sections of Ag@Ag nanoparticle; (c) absorption and (d) scattering cross-section of Ag@Pt nanoparticle.

    图 8  不同波长处Ag@Pt纳米颗粒的磁场分布和电场分布 (a) λ = 321.467 nm时的磁场分布; (b) λ = 380.452 nm时的磁场分布; (c) λ = 321.467 nm时的电场分布; (d) λ = 380.452 nm时的电场分布

    Figure 8.  Magnetic and electric fields distributions of Ag@Pt nanoparticle at different wavelengths: magnetic field distribution at (a) λ = 321.467 nm and (b) λ = 380.452 nm; electric field distribution at (c) λ = 321.467 nm and (d) λ = 380.452 nm.

    图 9  核芯粒径为20 nm时不同壳层厚度Ag@Pt纳米颗粒磁场分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Figure 9.  Magnetic field distributions of Ag@Pt nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    图 10  核芯粒径为20 nm时不同壳层厚度Ag@Pt纳米颗粒电场分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Figure 10.  Electric field distributions of Ag@Pt nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    图 11  核芯粒径为20 nm时不同壳层厚度纳米颗粒的核芯、壳层及整体吸收功率 (a) Ag@Ag纳米颗粒核芯吸收功率; (b) Ag@Ag纳米颗粒壳层吸收功率; (c) Ag@Ag纳米颗粒整体吸收功率; (d) Ag@Pt纳米颗粒核芯吸收功率; (e) Ag@Pt纳米颗粒壳层吸收功率; (f) Ag@Pt纳米颗粒整体吸收功率

    Figure 11.  The core, shell, and total absorption power for nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) Core, (b) shell, and (c) total absorption power of Ag@Ag nanoparticle; (d) core, (e) shell, and (f) total absorption power of Ag@Pt nanoparticle.

    图 12  核芯粒径为20 nm时不同壳层厚度Ag@Pt纳米颗粒吸收功率分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Figure 12.  Absorption power distributions of Ag@Pt nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    图 13  核芯粒径为20 nm时不同壳层厚度(0.5—4.0 nm)Pt@Ag纳米颗粒光学特性 (a) 吸收截面; (b) 散射截面

    Figure 13.  Optical characteristics of Pt@Ag nanoparticles with a core size of 20 nm and shell thickness ranging from 0.5 to 4.0 nm: (a) Absorption; (b) scattering cross-sections.

    图 14  核芯粒径为20 nm时不同壳层厚度Pt@Ag纳米颗粒磁场分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Figure 14.  Magnetic field distributions of Pt@Ag nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    图 15  核芯粒径为20 nm时不同壳层厚度Pt@Ag纳米颗粒电场分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Figure 15.  Electric field distributions of Pt@Ag nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    图 16  核芯粒径为20 nm时不同壳层厚度Pt@Ag纳米颗粒吸收功率分布 (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm

    Figure 16.  Absorption power distributions of Pt@Ag nanoparticles with a core diameter of 20 nm and different shell thicknesses: (a) δ = 1 nm; (b) δ = 2 nm; (c) δ = 3 nm; (d) δ = 4 nm.

    表 1  不同核芯粒径纳米颗粒吸收率

    Table 1.  Absorption rates of nanoparticles with different core diameters.

    粒径Ag@AgPt@PtAg@Pt
    1099.3538898.8384299.10692
    2096.7442994.4293496.2321
    3091.1389385.9607690.56968
    4082.3591374.5675381.94677
    5071.2331662.3876271.04794
    6059.4561851.0363359.38077
    7048.7419141.2853448.67587
    8039.9593533.4164639.92148
    9033.3699927.5867833.36847
    10028.5894823.506428.66334
    11025.1795420.7208725.32529
    12022.6852118.7673322.89612
    13020.7965717.3177121.04747
    14019.3116316.1914319.58624
    15018.1305415.2855618.40958
    16017.1957214.5571217.47313
    17016.4797213.9706116.74523
    18015.9453113.5124216.203
    19015.5569413.1683415.81046
    20015.2810112.9229815.53383
    DownLoad: CSV
  • [1]

    Cao C, Zhao Z Y, Zhang Y M, Peng S 2020 J. Phys. D: Appl. Phys. 53 265103Google Scholar

    [2]

    刘海舟, 喻小强, 李金磊, 徐凝, 周林, 朱嘉 2019 中国科学: 物理学 力学 天文学 49 17Google Scholar

    Liu H Z, Yu X Q, Li J L, Xu N, Zhou L, Zhu J 2019 Sci China: Phys. Mech. Astron. 49 17Google Scholar

    [3]

    Kunwar S, Pandit S, Jeong J H, Lee J 2020 Nano-Micro Lett. 12 91

    [4]

    任益弘, 朱君, 李娜, 王各, 娄健 2020 激光杂志 41 1Google Scholar

    Ren Y H, Zhu J, Li N, Wang G, Lou J 2020 Laser J. 41 1Google Scholar

    [5]

    Wang T M, Tang G H, Du M 2020 Appl. Therm. Eng. 173 115182Google Scholar

    [6]

    殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田 2021 物理学报 70 024201Google Scholar

    Yin C, Lu C J, Da J, Zhang R G, Kan X F, Han Q B, Xu T 2021 Acta Phys. Sin. 70 024201Google Scholar

    [7]

    彭浩程, 葛成, 周婧, 陈鹏, 施毅, 张荣, 郑有炓 2020 光电子技术 40 176Google Scholar

    Peng H C, Ge C, Zhou J, Chen P, Shi Y, Zhang R, Zheng Y L 2020 Optoe. Technol. 40 176Google Scholar

    [8]

    Chen M J, He Y R, Wang X Z, Hu Y W 2018 Appl. Energy 211 735Google Scholar

    [9]

    Tunkara E, DeJarnette D, Saunders A E, Baldwin M, Otanicar T, Roberts K P 2019 Appl. Energy 252 113459Google Scholar

    [10]

    Yu X X, Xuan Y M 2018 Sol. Energy 160 200Google Scholar

    [11]

    刘兵, 宫辉力, 刘锐, 胡长文 2019 应用化学 36 939Google Scholar

    Liu B, Gong H L, Liu R, Hu C W 2019 Chin. J. Appl. Chem. 36 939Google Scholar

    [12]

    朱群志, 蒋瑜毅 2017 光散射学报 29 222Google Scholar

    Zhu Q Z, Jiang Y Y 2017 Chin. J. Light Scatt. 29 222Google Scholar

    [13]

    Manjavacas A, Liu J G, Kulkarni V, Nordlander P 2014 ACS Nano 8 7630Google Scholar

    [14]

    Linic S, Aslam U, Boerigter C, Morabito M 2015 Nat. Mater. 14 567Google Scholar

    [15]

    朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 物理学报 68 147304Google Scholar

    Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 147304Google Scholar

    [16]

    林丹丽, 董旭, 查刘生 2018 分析测试学报 37 599Google Scholar

    Lin D L, Dong X, Zha L S 2018 J. Instr. Anal. 37 599Google Scholar

    [17]

    Chavez S, Aslam U, Linic S 2018 ACS Energy Lett. 3 1590Google Scholar

    [18]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [19]

    Werner W S M, Glantschnig K, Ambroschdraxl C 2009 J. Phys. Chem. Ref. Data 38 1013Google Scholar

  • [1] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [3] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [4] Wang Xiao-Bo, Li Ke-Wei, Gao Li-Juan, Cheng Xu-Dong, Jiang Rong. Preparation and thermal stability of CrAlON based spectrally selective absorbing coatings. Acta Physica Sinica, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [5] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [6] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [7] Dong Jun, Zhang Chen-Xue, Cheng Xiao-Tong, Xing Yu, Han Qing-Yan, Yan Xue-Wen, Qi Jian-Xia, Liu Ji-Hong, Yang Yi, Gao Wei. Enhancing red upconversion emission of Ho3+ ions through constructing NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+ core-shell structures. Acta Physica Sinica, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [8] Zhang Yu-Wen, Deng Yong-He, Wen Da-Dong, Zhao He-Ping, Gao Ming. Diffusion of Al atoms and growth of Al nanoparticle clusters on surface of Ni substrate. Acta Physica Sinica, 2020, 69(13): 136601. doi: 10.7498/aps.69.20200120
    [9] Zhang Jia-Chen, Yu Wei-Xing, Xiao Fa-Jun, Zhao Jian-Lin. Tuning optical force of dielectric/metal core-shell placed above Au film. Acta Physica Sinica, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [10] Liu Bei, Lu Xi-Jian, Liu Xiao-Ning, Wu Yi-Pin, Zou Bin. Hot injection synthesis of core-shell upconversion nanoparticles for bioimaging application. Acta Physica Sinica, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [11] Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei. Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure. Acta Physica Sinica, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [12] Lin Ying-Ying, Li Kui-Ying, Shan Qing-Song, Yin Hua, Zhu Rui-Ping. Photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe quantum dots with a core-shell structure. Acta Physica Sinica, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [13] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [14] Liu Zhen, Wang Yu-Xiao, Song Ying-Lin, Zhang Xue-Ru. Nano surface two-dimensional periodic half-round grooves enhanced light absorption in silicon film solar cell. Acta Physica Sinica, 2013, 62(16): 167801. doi: 10.7498/aps.62.167801
    [15] Li Xiao-Juan, Wei Shang-Jiang, Lü Wen-Hui, Wu Dan, Li Ya-Jun, Zhou Wen-Zheng. A new approach to fabricating silicon nanowire/poly(3, 4-ethylenedioxythiophene) hybrid heterojunction solar cells. Acta Physica Sinica, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [16] Li Guo-Long, He Li-Jun, Li Jin, Li Xue-Sheng, Liang Sen, Gao Mang-Mang, Yuan Hai-Wen. Light absorption enhancement in polymer solar cells with nano-Ag. Acta Physica Sinica, 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [17] Zou Xiao-Cui, Wu Mu-Sheng, Liu Gang, Ouyang Chu-Ying, Xu Bo. First-principles study on the electronic structures of β-SiC/carbon nanotube core-shell structures. Acta Physica Sinica, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [18] Li Guo-Long, Li Jin. The light absorption enhancement in polymer solar cells with periodic nano-structures gratings. Acta Physica Sinica, 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [19] Shu Ming-Fei, Shang Yu-Li, Chen Wei, Cao Wan-Qiang. Influence of core-shell structure on dielectric behaviour in relaxor ferroelectrics. Acta Physica Sinica, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [20] Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua. Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation. Acta Physica Sinica, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
Metrics
  • Abstract views:  3538
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2021
  • Accepted Date:  18 June 2021
  • Available Online:  15 August 2021
  • Published Online:  20 October 2021

/

返回文章
返回