Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate

Yan Ke-Feng Li Xiao-Sen Sun Li-Hua Chen Zhao-Yang Xia Zhi-Ming

Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate

Yan Ke-Feng, Li Xiao-Sen, Sun Li-Hua, Chen Zhao-Yang, Xia Zhi-Ming
PDF
Get Citation
  • Molecular dynamics(MD) simulation is used to study the promotion mechanism of store hydrogen via the hydrate formation. The stable structures and the microcosmic properties of pure H2 hydrate, H2+tetrahydrofuran (THF) hydrate, H2+tetra-n-butylammonium bromide (TBAB) and H2+tetraisoamylammonium bromide (TiAAB) semiclathrate hydrates are investigated systematically. The stabilization energy, EGH, between guest and cavity is calculated. It is shown that the large cavity of hydrate plays a main role of stabilizing hydrate. THF in large cavity can promote the stabilization of hydrogen hydrate and reduce the pressure of formation hydrogen hydrate, which are the same as the experimental results. Compared with the EGH between guest and large cavity, the results are in the order of increase as TiAAB,TBAB,THF,H2. It is concluded that the stability of semiclathrate hydrate is better than the structure Ⅱ hydrate, and H2+TiAAB semiclathrate hydrate is stablest. MD simulation provides helpful information for future TiAAB semiclathrate as a new promoter of forming hydrate and a new hydrogen storage material.
    • Funds:
    [1]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 Proc. Natl. Acad. Sci. USA 107 2801

    [2]

    Ramirez-Cuesta A J, Jones M O, David W I F 2009 Mater. Today 12 54

    [3]
    [4]

    Mao W L, Mao H, Goncharov A F, Stuzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M, Zhao Y 2002 Science 297 2247

    [5]
    [6]

    Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N, Sloan E D 2004 Science 306 469

    [7]
    [8]
    [9]

    Lokshin K A, Zhao Y, He D, Mao W L, Mao H, Hemley R J, Lobanov M V, Greenblatt M 2004 Phys. Rev. Lett. 93 125503

    [10]

    Hester K C, Strobel T A, Sloan E D, Koh C A, Huq A, Schultz A J 2006 J. Phys. Chem. B 110 14024

    [11]
    [12]

    Strobel T A, Taylor C J, Hester K C, Dec S F, Koh C A, Miller K T, Sloan E D 2006 J. Phys. Chem. B 110 17121

    [13]
    [14]
    [15]

    Dyadin Y A, Larionov E G, Manakov A Y, Zhurko F V, Aladko E Y, Mikina T V, Komarov V Y 1999 Mendeleev Commun. 5 209

    [16]

    Patchkovskii S, Tse J S 2003 Proc. Natl. Acad. Sci. USA 100 14645

    [17]
    [18]
    [19]

    Mao W L, Mao H K 2004 Proc. Natl. Acad. Sci. USA 101 708

    [20]
    [21]

    Lee H, Lee J W, Kim D Y, Park J, Seo Y T, Zeng H, Moudrakovski I L, Ratcliffe C I, Ripmeester J A 2005 Nature 434 743

    [22]
    [23]

    Anderson R, Chapoy A, Tohidi B 2007 Langmuir 23 3440

    [24]
    [25]

    Hashimoto S, Sugahara T, Sato H, Ohgaki K 2007 J. Chem. Eng. Data 52 517

    [26]

    Talyzin A 2008 Int. J. Hydrogen Ener. 33 111

    [27]
    [28]
    [29]

    Sugahara T, Haag J C, Prasad P S R, Warntjes A A, Sloan E D, Sum A K, Koh C A 2009 J. Am. Chem. Soc. 131 14616

    [30]

    Komatsu H, Yoshioka H, Ota M, Sato Y, Watanabe M, Smith R L, Peters C J 2010 J. Chem. Eng. Data 55 2214

    [31]
    [32]

    Strobel T A, Kim Y, Andrews G S, Ferrell J R, Koh C A, Herring A M, Sloan E D 2008 J. Am. Chem. Soc. 130 14975

    [33]
    [34]
    [35]

    Shin K, Kim Y, Strobel T A, Prasad P S R, Sugahara T, Lee H, Sloan E D, Sum A K, Koh C 2009 J. Phys. Chem. A 113 6415

    [36]

    Lin Y, Mao W L, Mao H K 2009 Proc. Natl. Acad. Sci. USA 106 8113

    [37]
    [38]

    Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H 2005 Acta Crystallogr. C 61 O65

    [39]
    [40]
    [41]

    Hashimoto S, Murayama S, Sugahara T, Sato H, Ohgaki K 2006 Chem. Eng. Sci. 61 7884

    [42]

    Hashimoto S, Sugahara T, Moritoki M, Sato H, Ohgaki K 2008 Chem. Eng. Sci. 63 1092

    [43]
    [44]

    Chapoy A, Anderson R, Tohidi B 2007 J. Am. Chem. Soc. 129 746

    [45]
    [46]

    Sakamoto J, Hashimoto S, Tsuda T, Sugahara T, Inoue Y, Ohgaki K 2008 Chem. Eng. Sci. 63 5789

    [47]
    [48]

    Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463

    [49]
    [50]

    Nada H 2006 J. Phys. Chem. B 110 16526

    [51]
    [52]
    [53]

    Vatamanu J, Kusalik P G 2006 J. Phys. Chem. B 110 15896

    [54]
    [55]

    Zhang J, Hawtin R W, Yang Y, Nakagava E, Tivero M, Choi S K, Rodger P M 2008 J. Phys. Chem. B 112 10608

    [56]
    [57]

    Yang Y H, Dong S L, Wang L 2008 Chin. Phys. B 17 270

    [58]

    Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727 (in Chinese) [颜克凤、李小森、陈朝阳、李 刚、李志宝 2007 物理学报 56 6727]

    [59]
    [60]

    Freer E M, Sloan E D 2000 Ann. N.Y. Acad. Sci. 912 651

    [61]
    [62]
    [63]

    Storr M T, Taylor P C, Monfort J P, Rodge P M 2004 J. Am. Chem. Soc. 126 1569

    [64]
    [65]

    Yan K F, Mi J G, Zhong C L 2006 Acta Chim. Sin. 64 223 (in Chinese) [颜克凤、密建国、仲崇立 2006 化学学报 64 223]

    [66]
    [67]

    Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407

    [68]
    [69]

    Feil D, Jeffrey G A 1961 J. Chem. Phys. 35 1863

    [70]

    Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507

    [71]
    [72]
    [73]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [74]
    [75]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [76]
    [77]

    Papadimitriou N I, Tsimpanogiannis I N, Peters C J, Papaioannou A T, Stubos A K 2008 J. Phys. Chem. B 112 14206

    [78]

    Chandrasekhar J, Jorgensen W L 1982 J. Chem. Phys. 77 5073

    [79]
    [80]
    [81]

    Lindahl E, Hess B, van der Spoel D 2001 J. Mol. Model. 7(8) 306

    [82]
    [83]

    Oberbrodhage J 2000 Phys. Chem. Chem. Phys. 2 129

    [84]
    [85]

    Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385

    [86]

    Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156

    [87]
    [88]
    [89]

    Nos S 1984 J. Chem. Phys. 81 511

    [90]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [91]
  • [1]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 Proc. Natl. Acad. Sci. USA 107 2801

    [2]

    Ramirez-Cuesta A J, Jones M O, David W I F 2009 Mater. Today 12 54

    [3]
    [4]

    Mao W L, Mao H, Goncharov A F, Stuzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M, Zhao Y 2002 Science 297 2247

    [5]
    [6]

    Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N, Sloan E D 2004 Science 306 469

    [7]
    [8]
    [9]

    Lokshin K A, Zhao Y, He D, Mao W L, Mao H, Hemley R J, Lobanov M V, Greenblatt M 2004 Phys. Rev. Lett. 93 125503

    [10]

    Hester K C, Strobel T A, Sloan E D, Koh C A, Huq A, Schultz A J 2006 J. Phys. Chem. B 110 14024

    [11]
    [12]

    Strobel T A, Taylor C J, Hester K C, Dec S F, Koh C A, Miller K T, Sloan E D 2006 J. Phys. Chem. B 110 17121

    [13]
    [14]
    [15]

    Dyadin Y A, Larionov E G, Manakov A Y, Zhurko F V, Aladko E Y, Mikina T V, Komarov V Y 1999 Mendeleev Commun. 5 209

    [16]

    Patchkovskii S, Tse J S 2003 Proc. Natl. Acad. Sci. USA 100 14645

    [17]
    [18]
    [19]

    Mao W L, Mao H K 2004 Proc. Natl. Acad. Sci. USA 101 708

    [20]
    [21]

    Lee H, Lee J W, Kim D Y, Park J, Seo Y T, Zeng H, Moudrakovski I L, Ratcliffe C I, Ripmeester J A 2005 Nature 434 743

    [22]
    [23]

    Anderson R, Chapoy A, Tohidi B 2007 Langmuir 23 3440

    [24]
    [25]

    Hashimoto S, Sugahara T, Sato H, Ohgaki K 2007 J. Chem. Eng. Data 52 517

    [26]

    Talyzin A 2008 Int. J. Hydrogen Ener. 33 111

    [27]
    [28]
    [29]

    Sugahara T, Haag J C, Prasad P S R, Warntjes A A, Sloan E D, Sum A K, Koh C A 2009 J. Am. Chem. Soc. 131 14616

    [30]

    Komatsu H, Yoshioka H, Ota M, Sato Y, Watanabe M, Smith R L, Peters C J 2010 J. Chem. Eng. Data 55 2214

    [31]
    [32]

    Strobel T A, Kim Y, Andrews G S, Ferrell J R, Koh C A, Herring A M, Sloan E D 2008 J. Am. Chem. Soc. 130 14975

    [33]
    [34]
    [35]

    Shin K, Kim Y, Strobel T A, Prasad P S R, Sugahara T, Lee H, Sloan E D, Sum A K, Koh C 2009 J. Phys. Chem. A 113 6415

    [36]

    Lin Y, Mao W L, Mao H K 2009 Proc. Natl. Acad. Sci. USA 106 8113

    [37]
    [38]

    Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H 2005 Acta Crystallogr. C 61 O65

    [39]
    [40]
    [41]

    Hashimoto S, Murayama S, Sugahara T, Sato H, Ohgaki K 2006 Chem. Eng. Sci. 61 7884

    [42]

    Hashimoto S, Sugahara T, Moritoki M, Sato H, Ohgaki K 2008 Chem. Eng. Sci. 63 1092

    [43]
    [44]

    Chapoy A, Anderson R, Tohidi B 2007 J. Am. Chem. Soc. 129 746

    [45]
    [46]

    Sakamoto J, Hashimoto S, Tsuda T, Sugahara T, Inoue Y, Ohgaki K 2008 Chem. Eng. Sci. 63 5789

    [47]
    [48]

    Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463

    [49]
    [50]

    Nada H 2006 J. Phys. Chem. B 110 16526

    [51]
    [52]
    [53]

    Vatamanu J, Kusalik P G 2006 J. Phys. Chem. B 110 15896

    [54]
    [55]

    Zhang J, Hawtin R W, Yang Y, Nakagava E, Tivero M, Choi S K, Rodger P M 2008 J. Phys. Chem. B 112 10608

    [56]
    [57]

    Yang Y H, Dong S L, Wang L 2008 Chin. Phys. B 17 270

    [58]

    Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727 (in Chinese) [颜克凤、李小森、陈朝阳、李 刚、李志宝 2007 物理学报 56 6727]

    [59]
    [60]

    Freer E M, Sloan E D 2000 Ann. N.Y. Acad. Sci. 912 651

    [61]
    [62]
    [63]

    Storr M T, Taylor P C, Monfort J P, Rodge P M 2004 J. Am. Chem. Soc. 126 1569

    [64]
    [65]

    Yan K F, Mi J G, Zhong C L 2006 Acta Chim. Sin. 64 223 (in Chinese) [颜克凤、密建国、仲崇立 2006 化学学报 64 223]

    [66]
    [67]

    Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407

    [68]
    [69]

    Feil D, Jeffrey G A 1961 J. Chem. Phys. 35 1863

    [70]

    Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507

    [71]
    [72]
    [73]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [74]
    [75]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [76]
    [77]

    Papadimitriou N I, Tsimpanogiannis I N, Peters C J, Papaioannou A T, Stubos A K 2008 J. Phys. Chem. B 112 14206

    [78]

    Chandrasekhar J, Jorgensen W L 1982 J. Chem. Phys. 77 5073

    [79]
    [80]
    [81]

    Lindahl E, Hess B, van der Spoel D 2001 J. Mol. Model. 7(8) 306

    [82]
    [83]

    Oberbrodhage J 2000 Phys. Chem. Chem. Phys. 2 129

    [84]
    [85]

    Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385

    [86]

    Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156

    [87]
    [88]
    [89]

    Nos S 1984 J. Chem. Phys. 81 511

    [90]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [91]
  • [1] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Surface effect on \begin{document}${\langle 100 \rangle }$\end{document} interstitial dislocation loop in iron. Acta Physica Sinica, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [2] Molecular dynamics study on structural characteristics of Lennard-Jones supercritical fluids. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191591
    [3] Guo Hui, Wang Ya-Jun, Wang Lin-Xue, Zhang Xiao-Fei. Dynamics of ring dark solitons in Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [4] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [5] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [6] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
    [7] Luo Duan, Hui Dan-Dan, Wen Wen-Long, Li Li-Li, Xin Li-Wei, Zhong Zi-Yuan, Ji Chao, Chen Ping, He Kai, Wang Xing, Tian Jin-Shou. Design of femtosecond electron diffractometer with adjustable gap. Acta Physica Sinica, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [8] Zhao Chao-Ying, Fan Yu-Ting, Meng Yi-Chao, Guo Qi-Zhi, Tan Wei-Han. Orbital angular momentum mode of cylindrical spiral wave-guide. Acta Physica Sinica, 2020, 69(5): 054207. doi: 10.7498/aps.69.20190997
    [9] Wang Lin, Wei Lai, Wang Zheng-Xiong. Effect of out-of-plane driving flow on formation of plasmoids in current sheet system. Acta Physica Sinica, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [10] Simulation of the nonlinear cahn-hilliard equation based onthe local refinement pure meshless method. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191829
    [11] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [12] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [13] Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin. Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Acta Physica Sinica, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [14] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [15] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [16] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [17] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [18] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
  • Citation:
Metrics
  • Abstract views:  2171
  • PDF Downloads:  727
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2011
  • Accepted Date:  27 June 2011
  • Published Online:  15 December 2011

Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate

  • 1. Key Laboratory of Renewable Energy and Natural Gas Hydrate, Guangzhou Center for Gas Hydrate Research,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
  • 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
  • 3. Hulunbeir Vocational and Technology College, Hulunbeir 021008, China

Abstract: Molecular dynamics(MD) simulation is used to study the promotion mechanism of store hydrogen via the hydrate formation. The stable structures and the microcosmic properties of pure H2 hydrate, H2+tetrahydrofuran (THF) hydrate, H2+tetra-n-butylammonium bromide (TBAB) and H2+tetraisoamylammonium bromide (TiAAB) semiclathrate hydrates are investigated systematically. The stabilization energy, EGH, between guest and cavity is calculated. It is shown that the large cavity of hydrate plays a main role of stabilizing hydrate. THF in large cavity can promote the stabilization of hydrogen hydrate and reduce the pressure of formation hydrogen hydrate, which are the same as the experimental results. Compared with the EGH between guest and large cavity, the results are in the order of increase as TiAAB,TBAB,THF,H2. It is concluded that the stability of semiclathrate hydrate is better than the structure Ⅱ hydrate, and H2+TiAAB semiclathrate hydrate is stablest. MD simulation provides helpful information for future TiAAB semiclathrate as a new promoter of forming hydrate and a new hydrogen storage material.

Reference (91)

Catalog

    /

    返回文章
    返回