Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The electrical transport properties of Ag/Nd0.7Sr0.3MnO3 ceramic interface

Medvedeva I Chen Shun-Sheng Huang Chang Wang Rui-Long Yang Chang-Ping

The electrical transport properties of Ag/Nd0.7Sr0.3MnO3 ceramic interface

Medvedeva I, Chen Shun-Sheng, Huang Chang, Wang Rui-Long, Yang Chang-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The transport properties of interface between metal electrode and Nd0.7Sr0.3MnO3 bulk have been investigated under 2-wire measuring mode using permeating Ag and Ag-glue contact, respectively. The results show that, for the permeating Ag contact, the measured results are similar to that of 4-wire measurement, and an ohmic character is obtained without EPIR effect. However, a strongly nonlinear V-I curve appears and exhibits a stable EPIR effect for the Ag-glue contact. Besides, It also shows remarkable difference when loaded with alternating current for the two different kinds of contacts. For the former, the real part of impedance R' increases with increasing frequency which is attributable to the skin effect; for the latter, however, the R' is of about megohm order of magnitude and the R' peak decreases with increasing frequency. Moreover, the R' peak splits into two peaks which respectively move to high and low temperature when further increasing the frequency. In combination with the data of scanning electron microscopy, the differences of electrical transport are discussed.
    • Funds:
    [1]

    Rüggeberg F, Klein A 2006 Appl. Phys. A 82 281

    [2]

    7971

    [3]

    Nakasaka T, Urago K, Sugiura M, Kobayashi T 2001 Jpn. J. Appl. Phys. (Part 2) 40 L518

    [4]

    P217 (in Chinese) [刘恩科、 朱秉升、 罗晋生 2008 半导体物理学(第7版)(北京:电子工业出版社) 第217页]

    [5]

    Liu G L, Yang Z H, Fang G L 2009 Acta Phys. Sin. 58 3364 (in Chinese) [刘贵立、 杨忠华、 方戈亮 2009 物理学报 58 3364]

    [6]

    Li Y B, Liu X, Li Z H, Fu Y, A. S. Kamzin, Wei F L, Yang Z 2009 Acta Phys. Sin. 58 7972 (in Chinese) [李彦波、 刘 曦、 李正华、 付 煜、 阿·谢·卡姆津、 魏福林、 杨 正 2009 物理学报 58 7972]

    [7]

    Wang C, Wang C Y 2009 Chin. Phys. B 18 3928

    [8]

    Klein A, Suberlich F, Spth B, Schulmeyer T, Kraft D 2007 J. Mater. Sci. 42 1890

    [9]

    Tiefenbacher S, Pettenkofer C, Jaegermann W 2002 J. Appl. Phys. 91 1984

    [10]

    Van de Krol R, Tuller H L 2002 Solid State Ionics 150 167

    [11]

    Krber C, Harvey S P, Mason T O, Klein A 2008 Surf. Sci. 602 3246

    [12]

    Gassenbauer Y, Wachau A, Klein A 2009 Phys. Chem. Chem. Phys. 11 3049

    [13]

    Maier J 2009 Phys. Chem. Chem. Phys. 11 3011

    [14]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [15]

    Andreasson B P, Janousch M, Staub U, Meijer G I, Delley B 2007 Mater. Sci. Eng. B 144 60

    [16]

    Gross R, Alff L, Büchner B, Freitag B H, Hüfener C, Klein J, Lu Y F, Mader W, Philipp J B, Rao M S R, Reutler P, Ritter S, Thienhaus S, Uhlenbruck S, Wiedenhorst B 2000 J. Magn. Magn. Mater. 211 150

    [17]

    Hwang H, Cheong S W, Ong N P, Batlogg B 1996 Phys. Rev. Lett. 77 2041

    [18]

    Gupta A, Gong G Q, Xiao G, Duncombe P R, Lecoeur P, Trouilloud P, Wang Y Y, Dravid V P, Sun J Z 1996 Phys. Rev. B 54 R15629

    [19]

    Mathur N D, Burnell G, Isaac S P, Jackson T J, Teo B S, MacManus-Driscoll J L, Cohen L F, Evetts J E, Blamire M G 1997 Nature 387 266

    [20]

    Maurice J L, Devos I, Casanove M J, Carrétéro C, Gachet G, Herranz G, Crété D G, Imhoff D, Barthélémy A, Bibes M, Bouzehouane K, Deranlot C, Fusil S, Jacquet é, Domengès B, Ballutaud D 2007 Mater. Sci. Eng. B 144 1

    [21]

    Yang C P, Chen S S, Dai Q, Guo D H, Wang H 2007 Acta Phys. Sin. 56 4908 (in Chinese) [杨昌平、 陈顺生、 戴 琪、 郭定和、 王 浩 2007 物理学报 56 4908]

    [22]

    Liu S Q, Wu N J, Ignatiev A 2000 Appl. Phys. Lett. 76 2749

    [23]

    Xie Y W, Sun J R, Wang D J, Liang S, Shen B G 2006 J. Appl. Phys. 100 033704

    [24]

    Oka T, Nagaosa N 2005 Phys. Rev. Lett. 95 266403

    [25]

    Baikalov A, Wang Y Q, Shen B, Lorenz B, Tsui S, Sun Y Y, Xue Y Y, Chu C W 2003 Appl. Phys. Lett. 83 975

    [26]

    Sawa A, Fujii T, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 85 4073

    [27]

    Li Q, Wang Z G, Liu S, Xing Z W, Liu M 2007 Acta Phys. Sin. 56 1637 (in Chinese) [李 倩、 王之国、 刘 甦、 邢钟文、 刘 楣 2007 物理学报 56 1637]

    [28]

    Chen S S, Yang C P, Xu L F, Yang F J, Wang H B, Wang H, Xiong L B, Yu Y, Medvedeva I V, Brner K 2010 Solid State Commun. 150 240

    [29]

    Liu L P, Zhao Z J, Liu S, Huang C X, Wu Z M, Yang X L 2006 Acta Phys. Sin. 55 2014 (in Chinese) [刘龙平、 赵振杰、 黄灿星、 吴志明、 杨燮龙 2006 物理学报 55 2014]

    [30]

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (the 7th edition)(Bei jing:Publishing House of Electronics Industry)

    [31]

    Reagor D W, Lee S Y, Li Y, Jia Q X 2004 J. Appl. Phys. 95

    [32]

    Shang D S, Wang Q, Chen L D, Dong R, Li X M, Zhang W Q 2006 Phys. Rev. B 73 245427

  • [1]

    Rüggeberg F, Klein A 2006 Appl. Phys. A 82 281

    [2]

    7971

    [3]

    Nakasaka T, Urago K, Sugiura M, Kobayashi T 2001 Jpn. J. Appl. Phys. (Part 2) 40 L518

    [4]

    P217 (in Chinese) [刘恩科、 朱秉升、 罗晋生 2008 半导体物理学(第7版)(北京:电子工业出版社) 第217页]

    [5]

    Liu G L, Yang Z H, Fang G L 2009 Acta Phys. Sin. 58 3364 (in Chinese) [刘贵立、 杨忠华、 方戈亮 2009 物理学报 58 3364]

    [6]

    Li Y B, Liu X, Li Z H, Fu Y, A. S. Kamzin, Wei F L, Yang Z 2009 Acta Phys. Sin. 58 7972 (in Chinese) [李彦波、 刘 曦、 李正华、 付 煜、 阿·谢·卡姆津、 魏福林、 杨 正 2009 物理学报 58 7972]

    [7]

    Wang C, Wang C Y 2009 Chin. Phys. B 18 3928

    [8]

    Klein A, Suberlich F, Spth B, Schulmeyer T, Kraft D 2007 J. Mater. Sci. 42 1890

    [9]

    Tiefenbacher S, Pettenkofer C, Jaegermann W 2002 J. Appl. Phys. 91 1984

    [10]

    Van de Krol R, Tuller H L 2002 Solid State Ionics 150 167

    [11]

    Krber C, Harvey S P, Mason T O, Klein A 2008 Surf. Sci. 602 3246

    [12]

    Gassenbauer Y, Wachau A, Klein A 2009 Phys. Chem. Chem. Phys. 11 3049

    [13]

    Maier J 2009 Phys. Chem. Chem. Phys. 11 3011

    [14]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [15]

    Andreasson B P, Janousch M, Staub U, Meijer G I, Delley B 2007 Mater. Sci. Eng. B 144 60

    [16]

    Gross R, Alff L, Büchner B, Freitag B H, Hüfener C, Klein J, Lu Y F, Mader W, Philipp J B, Rao M S R, Reutler P, Ritter S, Thienhaus S, Uhlenbruck S, Wiedenhorst B 2000 J. Magn. Magn. Mater. 211 150

    [17]

    Hwang H, Cheong S W, Ong N P, Batlogg B 1996 Phys. Rev. Lett. 77 2041

    [18]

    Gupta A, Gong G Q, Xiao G, Duncombe P R, Lecoeur P, Trouilloud P, Wang Y Y, Dravid V P, Sun J Z 1996 Phys. Rev. B 54 R15629

    [19]

    Mathur N D, Burnell G, Isaac S P, Jackson T J, Teo B S, MacManus-Driscoll J L, Cohen L F, Evetts J E, Blamire M G 1997 Nature 387 266

    [20]

    Maurice J L, Devos I, Casanove M J, Carrétéro C, Gachet G, Herranz G, Crété D G, Imhoff D, Barthélémy A, Bibes M, Bouzehouane K, Deranlot C, Fusil S, Jacquet é, Domengès B, Ballutaud D 2007 Mater. Sci. Eng. B 144 1

    [21]

    Yang C P, Chen S S, Dai Q, Guo D H, Wang H 2007 Acta Phys. Sin. 56 4908 (in Chinese) [杨昌平、 陈顺生、 戴 琪、 郭定和、 王 浩 2007 物理学报 56 4908]

    [22]

    Liu S Q, Wu N J, Ignatiev A 2000 Appl. Phys. Lett. 76 2749

    [23]

    Xie Y W, Sun J R, Wang D J, Liang S, Shen B G 2006 J. Appl. Phys. 100 033704

    [24]

    Oka T, Nagaosa N 2005 Phys. Rev. Lett. 95 266403

    [25]

    Baikalov A, Wang Y Q, Shen B, Lorenz B, Tsui S, Sun Y Y, Xue Y Y, Chu C W 2003 Appl. Phys. Lett. 83 975

    [26]

    Sawa A, Fujii T, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 85 4073

    [27]

    Li Q, Wang Z G, Liu S, Xing Z W, Liu M 2007 Acta Phys. Sin. 56 1637 (in Chinese) [李 倩、 王之国、 刘 甦、 邢钟文、 刘 楣 2007 物理学报 56 1637]

    [28]

    Chen S S, Yang C P, Xu L F, Yang F J, Wang H B, Wang H, Xiong L B, Yu Y, Medvedeva I V, Brner K 2010 Solid State Commun. 150 240

    [29]

    Liu L P, Zhao Z J, Liu S, Huang C X, Wu Z M, Yang X L 2006 Acta Phys. Sin. 55 2014 (in Chinese) [刘龙平、 赵振杰、 黄灿星、 吴志明、 杨燮龙 2006 物理学报 55 2014]

    [30]

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (the 7th edition)(Bei jing:Publishing House of Electronics Industry)

    [31]

    Reagor D W, Lee S Y, Li Y, Jia Q X 2004 J. Appl. Phys. 95

    [32]

    Shang D S, Wang Q, Chen L D, Dong R, Li X M, Zhang W Q 2006 Phys. Rev. B 73 245427

  • [1] Chen Shun-Sheng, Yang Chang-Ping, Deng Heng, Sun Zhi-Gang. Microstructure dependence of the electroresistance of Nd0.7Sr0.3MnO3. Acta Physica Sinica, 2008, 57(6): 3798-3802. doi: 10.7498/aps.57.3798
    [2] Wu Mei-Ling, Shi Da-Wei, Kan Zhi-Lan, Wang Rui-Long, Ding Yi-Min, Xiao Hai-Bo, Yang Chang-Ping. Comparison bwtween intrinsic and interfacial electrical pulse induced resistance effects in La0.5Ca0.5MnO3 ceramics. Acta Physica Sinica, 2013, 62(20): 207302. doi: 10.7498/aps.62.207302
    [3] Yang Chang-Ping, Chen Shun-Sheng, Dai Qi, Guo Ding-He, Wang Hao. Spin-dependent electroresistance in Nd0.67Sr0.33MnOy(y<3.0). Acta Physica Sinica, 2007, 56(8): 4908-4913. doi: 10.7498/aps.56.4908
    [4] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [5] Lu Wen-Hui, Zhang Shuai. Effect of contact resistance on field emission from carbon nanotube. Acta Physica Sinica, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [6] Lao Yan-Feng, Wu Hui-Zhen. Study on infrared absorption of interfaces in direct wafer bonded InP-GaAs structures. Acta Physica Sinica, 2005, 54(9): 4334-4339. doi: 10.7498/aps.54.4334
    [7] Liu Ya-Jie. Prediction of the magneto-resistivity of manganese oxides La0.67Ca0.33MnO3 and Pr0.7Sr0.3MnO3 via temperature and magnetic field. Acta Physica Sinica, 2013, 62(1): 017601. doi: 10.7498/aps.62.017601
    [8] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [9] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [10] Zheng Zhi-Xiu, Zhang Lin. Atomic-scale simulation study of structural changes of Fe-Cu binary system containing Cu clusters embedded in the Fe matrix during heating. Acta Physica Sinica, 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [11] Pu Xiao-Qing, Wu Jing, Guo Qiang, Cai Jian-Zhen. Theoretical study on ohmic contact between graphene and metal electrode. Acta Physica Sinica, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [12] Liu Gui-Li, Guo Yu-Fu, Li Rong-De. Electronic theory of interface characteristics of ZA27/CNT. Acta Physica Sinica, 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [13] Tang Yuan-He, Xie Guang-Yong, Liu Han-Chen, Shao Jian-Bin, Ma Qi, Liu Hui-Ping, Ning Hui, Yang Yu, Yan Cheng-Hai. Study of the interface optical property of bubbles in water based on PIV. Acta Physica Sinica, 2006, 55(5): 2257-2262. doi: 10.7498/aps.55.2257
    [14] Yang Hang-Sheng, Xie Ying-Jun. Controlling the interfacial structure of cubic boron nitride thin film prepared by plasma-enhanced chemical vapor deposition. Acta Physica Sinica, 2007, 56(9): 5400-5407. doi: 10.7498/aps.56.5400
    [15] Liu Gui-Li, Yang Zhong-Hua, Fang Ge-Liang. Electronic theory study of interface characteristic of magnesium/carbon nanotube with nickel. Acta Physica Sinica, 2009, 58(5): 3364-3369. doi: 10.7498/aps.58.3364
    [16] Zhang Xian-Gang, Zong Ya-Ping, Wang Ming-Tao, Wu Yan. A physical model to express grain boundaries in grain growth simulation by phase-field method. Acta Physica Sinica, 2011, 60(6): 068201. doi: 10.7498/aps.60.068201
    [17] Zhan Xiang-Lin, Sun Fang, Zeng Zhou-Mo, Wang Xiao-Yuan, Jin Shi-Jiu. Acoustic field characteristics of ultrasonic linear phased array for an interface condition. Acta Physica Sinica, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [18] Liu Si-Mian, Han Wei-Zhong. Mechanism of interaction between interface and radiation defects in metal. Acta Physica Sinica, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [19] Wang Fei, Liu Wang, Deng Ai-Hong, Zhu Jing-Jun, An Zhu, Wang Yuan. Interface effects on helium retention properties of ZrN/TaN nano-multilayers . Acta Physica Sinica, 2013, 62(18): 186801. doi: 10.7498/aps.62.186801
    [20] Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning. Composite interfaces and electrode properties of resistive random access memory devices. Acta Physica Sinica, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
  • Citation:
Metrics
  • Abstract views:  4415
  • PDF Downloads:  849
  • Cited By: 0
Publishing process
  • Received Date:  17 March 2010
  • Accepted Date:  26 May 2010
  • Published Online:  15 March 2011

The electrical transport properties of Ag/Nd0.7Sr0.3MnO3 ceramic interface

  • 1. (1)State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (2)The Provincial Key Laboratory of Piezoelectric Ceramics Materials and Apparatus, Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062, China

Abstract: The transport properties of interface between metal electrode and Nd0.7Sr0.3MnO3 bulk have been investigated under 2-wire measuring mode using permeating Ag and Ag-glue contact, respectively. The results show that, for the permeating Ag contact, the measured results are similar to that of 4-wire measurement, and an ohmic character is obtained without EPIR effect. However, a strongly nonlinear V-I curve appears and exhibits a stable EPIR effect for the Ag-glue contact. Besides, It also shows remarkable difference when loaded with alternating current for the two different kinds of contacts. For the former, the real part of impedance R' increases with increasing frequency which is attributable to the skin effect; for the latter, however, the R' is of about megohm order of magnitude and the R' peak decreases with increasing frequency. Moreover, the R' peak splits into two peaks which respectively move to high and low temperature when further increasing the frequency. In combination with the data of scanning electron microscopy, the differences of electrical transport are discussed.

Reference (32)

Catalog

    /

    返回文章
    返回