Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

General formulation of nonlinear Thomson scattering of arbitrary polarized laser and optimal conditions for X-ray production

Zhao Shi-Hua Lü Qing-Zheng Yuan Su-Ying Li Ying-Jun

General formulation of nonlinear Thomson scattering of arbitrary polarized laser and optimal conditions for X-ray production

Zhao Shi-Hua, Lü Qing-Zheng, Yuan Su-Ying, Li Ying-Jun
PDF
Get Citation
  • The general formulation of nonlinear Thomson scattering of arbitrary polarized laser is derived from electrodynamics analytically under relativistic conditions. The extreme condition for high order harmonics is educed from the analytical results. It is found that the circular polarization reaches a maximum while the linear polarization is at its minimum in the fundamental backscattering radiation in the same situations, which makes important consulting sense in the experimental research of X-ray source based on the Thomson scattering mechanism especially for high intensity incident laser pulse cases.
    • Funds:
    [1]

    prangle P, Ting A, Esarey E, Fisher A 1992 J. Appl. Phys. 72 5032

    [2]

    Spranglet P, Esarey E 1992 Phys. Fluids B 4 2241

    [3]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003

    [4]

    Fiocco G, Thompson E 1963 Phys. Rev. Lett. 10 89

    [5]

    Milburn R H 1963 Phys. Rev. Lett. 10 75

    [6]

    Bemporad C, Milburn R H, Tanaka N, Fotino M 1965 Phys. Rev. 138 B1546

    [7]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [8]

    Kim K J, Chattopadhyay S, Shank C V 1994 Nucl. Instrum. Methods Phys. Res., Sect. A 341 351

    [9]

    Schoenlein R W, Leemans W P, Chin A H, Volfbeyn P, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Science 274 236

    [10]

    Kashiwagi S, Washio M, Kobuki T, Kuroda R, Ben-Zvi I, Pogorelsky I, Kusche K, Skaritka J, Yakimenko V, Wang X J, Hirose T, Dobashi K, Muto T, Urakawa J, Omori T, Okugi T, Tsunemi A, Liu Y, He P, Cline D, Segalov Z 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 455 36

    [11]

    Kotaki H, Kando M, Dewa H, Kondo S, Watanabe T, Ueda T, Kinoshita K, Yoshii K, Uesaka M, Nakajima K 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 455 166

    [12]

    Pogorelsky I V, Ben-Zvi I, Hirose T, Kashiwagi S, Yakimenko V, Kusche K, Siddons P, Skaritka J, Kumita T, Tsunemi A, Omori T, Urakawa J, Washio M, Yokoya K, Okugi T, Liu Y, He P, Cline D 2000 Phys. Rev. ST Accel. Beams 3 090702

    [13]

    Uesaka M, Kotaki H, Nakajima K, Harano H, Kinoshita K, Watanabe T, Ueda T, Yoshii K, Kando M, Dewa H, Kondo S, Sakai F 2000 Nucl. Instrum. Methods Phys. Res., A 455 90

    [14]

    Catravas P, Esarey E, Leemans W P 2001 Meas. Sci. Technol. 12 1828

    [15]

    Hartemann F V, Baldis H A, Kerman A K, Foll A L, Luhmann J, Rupp B 2001 Phys. Rev. E 64 016501

    [16]

    Chouffani K, Wells D, Harmon F, Jones J, Lancaster G 2002 Nucl. Instrum. Methods Phys. Res. A 495 95

    [17]

    Sakai I, Aoki T, Dobashi K, Fukuda M, Higurashi A, Hirose T, Iimura T, Kurihara Y, Okugi T, Omori T, Urakawa J, Washio M, Yokoya K 2003 Phys. Rev. ST Accel. Beams 6 091001

    [18]

    Brown W J, Anderson S G, Barty C P J, Betts S M, Booth R, Crane J K, Cross R R, Fittinghoff D N, Gibson D J, Hartemann F V, Hartouni E P, Kuba J, Sage G P L, Slaughter D R, Tremaine A M, J.Wootton A, Springer P T 2004 Phys. Rev. ST Accel. Beams 7 060702

    [19]

    Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U, Sauerbrey R 2006 Phys. Rev. Lett. 96 014802

    [20]

    Babzien M, Ben-Zvi I, Kusche K, Pavlishin I V, Pogorelsky I V, Siddons D P, Yakimenko V, Cline D, Zhou F, Hirose T, Kamiya Y, Kumita T, Omori T, Urakawa J, Yokoya K 2006 Phys. Rev. Lett. 96 054802

    [21]

    Yakimenko V, Pogorelsky I V 2006 Phys. Rev. ST Accel. Beams 9 091001

    [22]

    Priebe G, Laundy D, Macdonald M A, Diakun G P, Jamison S P, Jones L B, Holder D J, Smith S L, Phillips P J, Fell B D, Sheehy B, Naumova N, Sokolov I V, Ter-Avetisyan S, Spohr K, Krafft G A, Rosenzweig J B, Schramm U, Grüner F, Hirst G J, Collier J, Chattopadhyay S, Seddon E A 2008 Laser Part. Beams 26 649

    [23]

    Tang C, Huang W, Li R, Du Y, Yan L, JiaruShi, Du Q, Yu P, Chen H, Du T, Cheng C, Lin Y 2009 Nucl. Instrum. Methods Phys. Res. A 608 s70

    [24]

    Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. ST Accel. Beams 13 070704

    [25]

    Gibson D J, Albert F, Anderson S G, Betts S M, Messerly M J, Phan H H, Semenov V A, Shverdin M Y, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. ST Accel. Beams 13 070703

    [26]

    Sarachik E S, Schappert G T 1970 Phys. Rev. D 1 2738

    [27]

    Watson G N 1965 A Treatise on the Theory of Bessel Functions (Cambridge: Cambridge University Press) p14—667

    [28]

    Dattoli G, Giannessi L, Mezi L, Torre A 1990 Nuovo Cimento 105B 327

  • [1]

    prangle P, Ting A, Esarey E, Fisher A 1992 J. Appl. Phys. 72 5032

    [2]

    Spranglet P, Esarey E 1992 Phys. Fluids B 4 2241

    [3]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003

    [4]

    Fiocco G, Thompson E 1963 Phys. Rev. Lett. 10 89

    [5]

    Milburn R H 1963 Phys. Rev. Lett. 10 75

    [6]

    Bemporad C, Milburn R H, Tanaka N, Fotino M 1965 Phys. Rev. 138 B1546

    [7]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [8]

    Kim K J, Chattopadhyay S, Shank C V 1994 Nucl. Instrum. Methods Phys. Res., Sect. A 341 351

    [9]

    Schoenlein R W, Leemans W P, Chin A H, Volfbeyn P, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Science 274 236

    [10]

    Kashiwagi S, Washio M, Kobuki T, Kuroda R, Ben-Zvi I, Pogorelsky I, Kusche K, Skaritka J, Yakimenko V, Wang X J, Hirose T, Dobashi K, Muto T, Urakawa J, Omori T, Okugi T, Tsunemi A, Liu Y, He P, Cline D, Segalov Z 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 455 36

    [11]

    Kotaki H, Kando M, Dewa H, Kondo S, Watanabe T, Ueda T, Kinoshita K, Yoshii K, Uesaka M, Nakajima K 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 455 166

    [12]

    Pogorelsky I V, Ben-Zvi I, Hirose T, Kashiwagi S, Yakimenko V, Kusche K, Siddons P, Skaritka J, Kumita T, Tsunemi A, Omori T, Urakawa J, Washio M, Yokoya K, Okugi T, Liu Y, He P, Cline D 2000 Phys. Rev. ST Accel. Beams 3 090702

    [13]

    Uesaka M, Kotaki H, Nakajima K, Harano H, Kinoshita K, Watanabe T, Ueda T, Yoshii K, Kando M, Dewa H, Kondo S, Sakai F 2000 Nucl. Instrum. Methods Phys. Res., A 455 90

    [14]

    Catravas P, Esarey E, Leemans W P 2001 Meas. Sci. Technol. 12 1828

    [15]

    Hartemann F V, Baldis H A, Kerman A K, Foll A L, Luhmann J, Rupp B 2001 Phys. Rev. E 64 016501

    [16]

    Chouffani K, Wells D, Harmon F, Jones J, Lancaster G 2002 Nucl. Instrum. Methods Phys. Res. A 495 95

    [17]

    Sakai I, Aoki T, Dobashi K, Fukuda M, Higurashi A, Hirose T, Iimura T, Kurihara Y, Okugi T, Omori T, Urakawa J, Washio M, Yokoya K 2003 Phys. Rev. ST Accel. Beams 6 091001

    [18]

    Brown W J, Anderson S G, Barty C P J, Betts S M, Booth R, Crane J K, Cross R R, Fittinghoff D N, Gibson D J, Hartemann F V, Hartouni E P, Kuba J, Sage G P L, Slaughter D R, Tremaine A M, J.Wootton A, Springer P T 2004 Phys. Rev. ST Accel. Beams 7 060702

    [19]

    Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U, Sauerbrey R 2006 Phys. Rev. Lett. 96 014802

    [20]

    Babzien M, Ben-Zvi I, Kusche K, Pavlishin I V, Pogorelsky I V, Siddons D P, Yakimenko V, Cline D, Zhou F, Hirose T, Kamiya Y, Kumita T, Omori T, Urakawa J, Yokoya K 2006 Phys. Rev. Lett. 96 054802

    [21]

    Yakimenko V, Pogorelsky I V 2006 Phys. Rev. ST Accel. Beams 9 091001

    [22]

    Priebe G, Laundy D, Macdonald M A, Diakun G P, Jamison S P, Jones L B, Holder D J, Smith S L, Phillips P J, Fell B D, Sheehy B, Naumova N, Sokolov I V, Ter-Avetisyan S, Spohr K, Krafft G A, Rosenzweig J B, Schramm U, Grüner F, Hirst G J, Collier J, Chattopadhyay S, Seddon E A 2008 Laser Part. Beams 26 649

    [23]

    Tang C, Huang W, Li R, Du Y, Yan L, JiaruShi, Du Q, Yu P, Chen H, Du T, Cheng C, Lin Y 2009 Nucl. Instrum. Methods Phys. Res. A 608 s70

    [24]

    Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. ST Accel. Beams 13 070704

    [25]

    Gibson D J, Albert F, Anderson S G, Betts S M, Messerly M J, Phan H H, Semenov V A, Shverdin M Y, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. ST Accel. Beams 13 070703

    [26]

    Sarachik E S, Schappert G T 1970 Phys. Rev. D 1 2738

    [27]

    Watson G N 1965 A Treatise on the Theory of Bessel Functions (Cambridge: Cambridge University Press) p14—667

    [28]

    Dattoli G, Giannessi L, Mezi L, Torre A 1990 Nuovo Cimento 105B 327

  • [1] Zhou Hui-Jun, Cheng Mu-Tian, Liu Shao-Ding, Wang Qu-Quan, Zhan Ming-Sheng, Xue Qi-Kun. High polarization properties of single-photon emission from anisotropic InGaAs quantum dots. Acta Physica Sinica, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
    [2] Liu Yun, Zhang Xiong, Zheng Yong-Gang, Wang Xiao-Min, Bao Yu-Ying. Polarization and variations of Blazar. Acta Physica Sinica, 2007, 56(9): 5558-5563. doi: 10.7498/aps.56.5558
    [3] Sun Yao, Zhang Chun-Min, Du Juan, Zhao Bao-Chang. A new method of polarization measurement based on the novel polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(6): 3863-3870. doi: 10.7498/aps.59.3863
    [4] Wang Mu-Guang, Li Tang-Jun, Jian Shui-Sheng, Cui Jie, Diao Cao, Lou Cai-Yun, Huo Li, Yao He-Jun, Zeng Li. Dynamic PMD compensation in 4×10Gb/s optical time-division multiplexed transmission system. Acta Physica Sinica, 2005, 54(6): 2774-2778. doi: 10.7498/aps.54.2774
    [5] Chen Wei, Xing Ming-Xin, Ren Gang, Wang Ke, Du Xiao-Yu, Zhang Ye-Jin, Zheng Wan-Hua. Design of high polarization and single-mode photonic crystal laser. Acta Physica Sinica, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [6] Ke Xi-Zheng, Wang Jiao. Comparison of polarization property of partially coherent beam between propagating along an uplink path and a downlink path in atmospheric turbulence. Acta Physica Sinica, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [7] Yang Ai-Lin, Lin Qiang. Polarization characteristics of coherent partially Airy beams propagating in atmospheric turbulence. Acta Physica Sinica, 2014, 63(20): 204101. doi: 10.7498/aps.63.204101
    [8] Dai Cun-Li, Zhao Yan-Yan, Wu Wei, Zeng Lun-Wu. Synchronizability of mobile Ad Hoc networks. Acta Physica Sinica, 2010, 59(11): 7719-7723. doi: 10.7498/aps.59.7719
    [9] Wang Chen, An Hong-Hai, Qiao Xiu-Mei, Fang Zhi-Heng, Xiong Jun, Wang Wei, Sun Jin-Ren, Zheng Wu-Di. An experimental attempt to produce Thomson scattering with soft X-ray lasers. Acta Physica Sinica, 2013, 62(13): 135203. doi: 10.7498/aps.62.135203
    [10] WU HUA-SHENG, LAO PU-DONG, WU JIAN-GEN, QU FENG-YUAN. ORIENTATION DETERMINATION OF THIN CRYSTAL LAYER WITH DIAMOND STRUCTURE BY RAMAN SCATTERING EXTREMA TECHNIQUE. Acta Physica Sinica, 1989, 38(1): 111-117. doi: 10.7498/aps.38.111
  • Citation:
Metrics
  • Abstract views:  3076
  • PDF Downloads:  719
  • Cited By: 0
Publishing process
  • Received Date:  01 November 2010
  • Accepted Date:  28 December 2010
  • Published Online:  15 May 2011

General formulation of nonlinear Thomson scattering of arbitrary polarized laser and optimal conditions for X-ray production

  • 1. School of Science, China University of Mining & Technology (Beijing), Beijing 100083, China

Abstract: The general formulation of nonlinear Thomson scattering of arbitrary polarized laser is derived from electrodynamics analytically under relativistic conditions. The extreme condition for high order harmonics is educed from the analytical results. It is found that the circular polarization reaches a maximum while the linear polarization is at its minimum in the fundamental backscattering radiation in the same situations, which makes important consulting sense in the experimental research of X-ray source based on the Thomson scattering mechanism especially for high intensity incident laser pulse cases.

Reference (28)

Catalog

    /

    返回文章
    返回