Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measuring breakpoints and impedance mismatch for dielectric transmission lines by using correlation method of chaotic signals

Xu Hang Wang An-Bang Han Xiao-Hong Ma Jian-Yi Wang Yun-Cai

Measuring breakpoints and impedance mismatch for dielectric transmission lines by using correlation method of chaotic signals

Xu Hang, Wang An-Bang, Han Xiao-Hong, Ma Jian-Yi, Wang Yun-Cai
PDF
Get Citation
  • We demonstrate experimentally a method to measure breakpoints and impedance mismatch for dielectric transmission lines by using broadband chaotic signals. Chaotic signal serving as a probe signal is obtained from the chaotic laser diode with optical feedback. Correlation method can realize breakpoint location, impedance estimation, and live test. Experimental results show that the location deviation is less than 1%, the impedance error is within the nominal rating, and interference margin is about 48 dB for 2 MHz square pulse signal on wire.
    • Funds:
    [1]

    Furse C, Chung Y C, Lo C, Pendayala P 2006 Smart Structures and Systems 2 25

    [2]

    Mackay N A M, Penstone S R 1974 IEEE Trans. Instrum. Meas. 23 155

    [3]

    Jensen G A, Ernst S M U.S. Patent 5 586 054

    [4]

    Furse C, Chung Y C, Dangol R, Nielsen M, Mabey G, Woodward R 2003 IEEE Trans. Electromagn. Compat. 45 306

    [5]

    Sharma C R, Furse C, Harrison R R 2007 IEEE Sens. J. 7 43

    [6]

    Smith P, Furse C, Gunther J 2005 IEEE Sens. J. 5 1469

    [7]

    Lo C, Furse C 2005 IEEE Trans. Electromagn. Compat. 47 97

    [8]

    Mrk J, Tromborg B, Mark J 1992 IEEE J. Quantum Electron. 28 93

    [9]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴、王安帮、王海红、王云才 2008 物理学报 57 2266]

    [10]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1994 Appl. Phys. Lett. 64 3539

    [11]

    Tang S, Liu J M 2001 IEEE J. Quantum Electron. 37 329

    [12]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [13]

    Zhang X J, Wang B J, Yang L Z, Wang A B, Guo D M, Wang Y C 2009 Acta Phys. Sin. 58 3203 (in Chinese) [张秀娟、王 冰洁、杨玲珍、王安帮、郭东明、王云才 2009 物理学报 58 3203]

    [14]

    Liu S F, Xia G Q, Wu J G, Li L F, Wu Z M 2008 Acta Phys. Sin. 57 1502 (in Chinese) [刘胜芳、夏光琼、吴加贵、李林福、吴正茂 2008 物理学报 57 1502]

    [15]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才、张耕玮、王安帮、王冰洁、李艳丽、郭 萍 2007 物理学报 56 4372]

    [16]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 1732

    [17]

    Myneni K, Barr T A, Reed B R, Pethel S D, Corron N J 2001 Appl. Phys. Lett. 78 1496

    [18]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815

    [19]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991

    [20]

    Wang A B, Wang Y C 2007 Proc. SPIE 6279 627970

    [21]

    Wang B J, Wang Y C, Kong L Q, Wang A B 2008 Chin. Opt. Lett. 6 868

    [22]

    Gong T A, Wang Y C, Kong L Q, Li H Z, Wang A B 2009 Chinese J. Lasers 36 2426 (in Chinese) [龚天安、王云才、孔令琴、李海忠、王安邦 2009 中国激光 36 2426]

    [23]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

  • [1]

    Furse C, Chung Y C, Lo C, Pendayala P 2006 Smart Structures and Systems 2 25

    [2]

    Mackay N A M, Penstone S R 1974 IEEE Trans. Instrum. Meas. 23 155

    [3]

    Jensen G A, Ernst S M U.S. Patent 5 586 054

    [4]

    Furse C, Chung Y C, Dangol R, Nielsen M, Mabey G, Woodward R 2003 IEEE Trans. Electromagn. Compat. 45 306

    [5]

    Sharma C R, Furse C, Harrison R R 2007 IEEE Sens. J. 7 43

    [6]

    Smith P, Furse C, Gunther J 2005 IEEE Sens. J. 5 1469

    [7]

    Lo C, Furse C 2005 IEEE Trans. Electromagn. Compat. 47 97

    [8]

    Mrk J, Tromborg B, Mark J 1992 IEEE J. Quantum Electron. 28 93

    [9]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴、王安帮、王海红、王云才 2008 物理学报 57 2266]

    [10]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1994 Appl. Phys. Lett. 64 3539

    [11]

    Tang S, Liu J M 2001 IEEE J. Quantum Electron. 37 329

    [12]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [13]

    Zhang X J, Wang B J, Yang L Z, Wang A B, Guo D M, Wang Y C 2009 Acta Phys. Sin. 58 3203 (in Chinese) [张秀娟、王 冰洁、杨玲珍、王安帮、郭东明、王云才 2009 物理学报 58 3203]

    [14]

    Liu S F, Xia G Q, Wu J G, Li L F, Wu Z M 2008 Acta Phys. Sin. 57 1502 (in Chinese) [刘胜芳、夏光琼、吴加贵、李林福、吴正茂 2008 物理学报 57 1502]

    [15]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才、张耕玮、王安帮、王冰洁、李艳丽、郭 萍 2007 物理学报 56 4372]

    [16]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 1732

    [17]

    Myneni K, Barr T A, Reed B R, Pethel S D, Corron N J 2001 Appl. Phys. Lett. 78 1496

    [18]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815

    [19]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991

    [20]

    Wang A B, Wang Y C 2007 Proc. SPIE 6279 627970

    [21]

    Wang B J, Wang Y C, Kong L Q, Wang A B 2008 Chin. Opt. Lett. 6 868

    [22]

    Gong T A, Wang Y C, Kong L Q, Li H Z, Wang A B 2009 Chinese J. Lasers 36 2426 (in Chinese) [龚天安、王云才、孔令琴、李海忠、王安邦 2009 中国激光 36 2426]

    [23]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

  • [1] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [2] Zhuang Zhi-Ben, Li Jun, Liu Jing-Yi, Chen Shi-Qiang. Image encryption algorithm based on new five-dimensional multi-ring multi-wing hyperchaotic system. Acta Physica Sinica, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [3] Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191858
    [4] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [5] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [6] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
    [7] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
  • Citation:
Metrics
  • Abstract views:  3582
  • PDF Downloads:  900
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2010
  • Accepted Date:  02 November 2010
  • Published Online:  15 September 2011

Measuring breakpoints and impedance mismatch for dielectric transmission lines by using correlation method of chaotic signals

  • 1. Institute of Optoelectronic Engineering, Dept. of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China

Abstract: We demonstrate experimentally a method to measure breakpoints and impedance mismatch for dielectric transmission lines by using broadband chaotic signals. Chaotic signal serving as a probe signal is obtained from the chaotic laser diode with optical feedback. Correlation method can realize breakpoint location, impedance estimation, and live test. Experimental results show that the location deviation is less than 1%, the impedance error is within the nominal rating, and interference margin is about 48 dB for 2 MHz square pulse signal on wire.

Reference (23)

Catalog

    /

    返回文章
    返回