Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Geometric quantum phase for three-level mixed state

Rao Huang-Yun Liu Yi-Bao Jiang Yan-Yan Guo Li-Ping Wang Zi-Sheng

Geometric quantum phase for three-level mixed state

Rao Huang-Yun, Liu Yi-Bao, Jiang Yan-Yan, Guo Li-Ping, Wang Zi-Sheng
PDF
Get Citation
  • By expanding the density matrix of the open system in terms of Gell-mann matrix in a three-level system, we parameterize coefficients of expansion by some azimuthal angles and find an identity mapping of the density matrices onto interior points of the unit Poincaré sphere. Thus, the relations between the points on the unit Poincaré sphere and wave functions are extended to connect the interior points in the sphere with the nonunit vector rays corresponding to an open system in complex Hilbert space. Thus,the geometric phases for the open system are proposed to be observed by the nonunit vector rays,where the geometric phase of the pure state is the limiting case of our definition. The results show that this geometric phase merely with duplicate three-dimensional Hilbert projection space geometry structure related, has nothing to do with the open system concrete evolution way; and it depends on population inversion and is a slippy and single-value curve of Bloch radius. Therefore, the mixed state of open system retains indeed a memory of its motion in the form of a geometric phase factor.
    • Funds: Project supported by the National Natural Science Foundation of China (Grants No.10775108), the Natural Science Foundation of Jiangxi (Grants No. 2010GZW0026), and the Foundation of Science and Technology of Education Office of Jiangxi Province (Grant No. GJJ10404).
    [1]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485

    [2]

    Berry M V 1984 Proc. R. Soc.(London),Ser A 392 45

    [3]

    Fonseca-Romero K M, Aguiar-Pinto A C, Thomaz M T 2002 Physica A 307 142

    [4]

    Li C F, Guo G C 1996 Acta Phys. Sin. 45 897(in Chinese )[李春芳, 郭光灿 1996 物理学报 45 897]

    [5]

    Li B Z, Zhang D G , Wu J H, Yan F L 1997 Acta Phys. Sin. 46 227(in Chinese )[李伯臧, 张德刚, 吴建华, 阎凤利 1997 物理学报 46 227]

    [6]

    Li H Z 2004 Acta Phys. Sin. 53 1643(in Chinese )[李华钟 2004 物理学报 53 1643]

    [7]

    Zheng L M, Wang F Q, Liu S H 2009 Acta Phys. Sin. 58 2430(in Chinese )[郑力明, 王发强, 刘颂豪 2009 物理学报 58 2430]

    [8]

    Berr-Aryeh Y 2004 J. Opt. B:Quantum Semiclass. Opt. 6 R1

    [9]

    Jones J A, Vedral V, Ekert A, Castagnoli G 1999 Nature 403 689

    [10]

    Falci C, Fazio R, Palma G M, Siewert J, Vedral V 2000 Nature 407 355

    [11]

    Wang Z S,Wu C F, Feng X L, Kwek L C, Lai C H, Oh C H, Vedral V 2007 Phys. Rev. A 76 044303

    [12]

    Carollo A, Fuentes-Guridi I, Franca Santos M, Vedral V 2003 Phys. Rev. Lett. 90 160402

    [13]

    Fonseca Romero K M, Aguiar A C, Thomaz M T 2002 Physica A 307 142

    [14]

    Nazir A, Spiller T P, Munro W J 2003 Phys. Rev. A 65 042303

    [15]

    Whitney R S, Gefen Y 2003 Phys. Rev. Lett. 90 190402

    [16]

    Chiara G De, Palma M 2003 Phys. Rev. Lett. 91 090404

    [17]

    Tong D M, Sjoqvist E, Kwek L C, Oh C H 2004 Phys. Rev. Lett. 93 080405

    [18]

    Whitney R S, Makhlin Y, Shnirman A, Gefen Y 2005 Phys. Rev. Lett. 94 070407

    [19]

    Carollo A, Palma G M , zinski A, Santos, Vedral V 2006 Phys. Rev. Lett. 96 150403

    [20]

    Wang Z S, Kwek L C, Lai C H, Oh C H 2006 Europhys. Lett. 74 958

    [21]

    Jiang Y Y, Ji Y H, Xu H L, Hu L Y, Wang Z S, Chen Z Q, Guo L P 2010 Phys. Rev. A 82 062108

    [22]

    Wang Z S, Wu C F, Kwek L C, Lai C H, Oh C H 2007 Phys. Rev. A 75 024102

    [23]

    Lindblad G 1976 Commun. Math. Phys. 48 119

    [24]

    Wang Z S, Kwek L C, Lai C H, Oh C H 2005 The European Physical Journal D 33 285

    [25]

    Wang Z S 2009 Int. J. Theor. Phys. 48 2353

    [26]

    Yu Y X, Chen Z Q, Hu L Y, Tang H S, Wang Z S 2011 Int. J. Theor. Phys. 50 148

  • [1]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485

    [2]

    Berry M V 1984 Proc. R. Soc.(London),Ser A 392 45

    [3]

    Fonseca-Romero K M, Aguiar-Pinto A C, Thomaz M T 2002 Physica A 307 142

    [4]

    Li C F, Guo G C 1996 Acta Phys. Sin. 45 897(in Chinese )[李春芳, 郭光灿 1996 物理学报 45 897]

    [5]

    Li B Z, Zhang D G , Wu J H, Yan F L 1997 Acta Phys. Sin. 46 227(in Chinese )[李伯臧, 张德刚, 吴建华, 阎凤利 1997 物理学报 46 227]

    [6]

    Li H Z 2004 Acta Phys. Sin. 53 1643(in Chinese )[李华钟 2004 物理学报 53 1643]

    [7]

    Zheng L M, Wang F Q, Liu S H 2009 Acta Phys. Sin. 58 2430(in Chinese )[郑力明, 王发强, 刘颂豪 2009 物理学报 58 2430]

    [8]

    Berr-Aryeh Y 2004 J. Opt. B:Quantum Semiclass. Opt. 6 R1

    [9]

    Jones J A, Vedral V, Ekert A, Castagnoli G 1999 Nature 403 689

    [10]

    Falci C, Fazio R, Palma G M, Siewert J, Vedral V 2000 Nature 407 355

    [11]

    Wang Z S,Wu C F, Feng X L, Kwek L C, Lai C H, Oh C H, Vedral V 2007 Phys. Rev. A 76 044303

    [12]

    Carollo A, Fuentes-Guridi I, Franca Santos M, Vedral V 2003 Phys. Rev. Lett. 90 160402

    [13]

    Fonseca Romero K M, Aguiar A C, Thomaz M T 2002 Physica A 307 142

    [14]

    Nazir A, Spiller T P, Munro W J 2003 Phys. Rev. A 65 042303

    [15]

    Whitney R S, Gefen Y 2003 Phys. Rev. Lett. 90 190402

    [16]

    Chiara G De, Palma M 2003 Phys. Rev. Lett. 91 090404

    [17]

    Tong D M, Sjoqvist E, Kwek L C, Oh C H 2004 Phys. Rev. Lett. 93 080405

    [18]

    Whitney R S, Makhlin Y, Shnirman A, Gefen Y 2005 Phys. Rev. Lett. 94 070407

    [19]

    Carollo A, Palma G M , zinski A, Santos, Vedral V 2006 Phys. Rev. Lett. 96 150403

    [20]

    Wang Z S, Kwek L C, Lai C H, Oh C H 2006 Europhys. Lett. 74 958

    [21]

    Jiang Y Y, Ji Y H, Xu H L, Hu L Y, Wang Z S, Chen Z Q, Guo L P 2010 Phys. Rev. A 82 062108

    [22]

    Wang Z S, Wu C F, Kwek L C, Lai C H, Oh C H 2007 Phys. Rev. A 75 024102

    [23]

    Lindblad G 1976 Commun. Math. Phys. 48 119

    [24]

    Wang Z S, Kwek L C, Lai C H, Oh C H 2005 The European Physical Journal D 33 285

    [25]

    Wang Z S 2009 Int. J. Theor. Phys. 48 2353

    [26]

    Yu Y X, Chen Z Q, Hu L Y, Tang H S, Wang Z S 2011 Int. J. Theor. Phys. 50 148

  • [1] Di Yao-Min, Hu Bao-Lin, Liu Dong-Dong, Yan Shi-Ming. Concurrence of the mixed state of two non-orthogonal pure states. Acta Physica Sinica, 2006, 55(8): 3869-3874. doi: 10.7498/aps.55.3869
    [2] ZHU DONG-PEI, RUAN TU-NAN, SHI MING-JUN, DU JIANG-FENG. THE GEOMETRICAL PICTURE OF MIXED ENTANGLED STATES. Acta Physica Sinica, 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
    [3] Yang Dong-Sheng, Wu Bai-Mei, Li Bo, Zheng Wei-Hua, Li Shi-Yan, Chen Xian-Hui, Cao Lie-Zhao. Anomalous thermal conductivity enhancement in the mixed state of MgB2. Acta Physica Sinica, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [4] Liu Ping, Deng Wen-Ji, Xu Xiao. The uncertainty relations and squeezing effects for mixed states*. Acta Physica Sinica, 2004, 53(11): 3668-3672. doi: 10.7498/aps.53.3668
    [5] Shan Chuan-Jia. Berry phase and quantum phase transition in spin chain system with three-site interaction. Acta Physica Sinica, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [6] Zhuang Fei, Shen Jian-Qi. The nonadiabatic conditional geometric phase shift in a coiled fiber system. Acta Physica Sinica, 2005, 54(3): 1048-1052. doi: 10.7498/aps.54.1048
    [7] Zhu Hong-Yi, Shen Jian-Qi. . Acta Physica Sinica, 2002, 51(7): 1448-1452. doi: 10.7498/aps.51.1448
    [8] Zheng Ying-Hong, Chen Tong, Wang Ping, Chang Zhe. Properties of geometric phase under Galilean transformation. Acta Physica Sinica, 2007, 56(11): 6199-6203. doi: 10.7498/aps.56.6199
    [9] Liu Song-Hao, Wang Fa-Qiang, Zheng Li-Ming. Geometric phase evolution of atom under non-Markovian environment. Acta Physica Sinica, 2009, 58(4): 2430-2434. doi: 10.7498/aps.58.2430
    [10] Zhuang Fei, Shen Jian-Qi. Investigation of photon geometric phases inside a curved fiber made of biaxially anisotropic left-handed media. Acta Physica Sinica, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [11] Ma Rui-Qiong, Li Yong-Fang, Shi Jian. Quantum interference effects of coherent instantaneous states and Berry phase. Acta Physica Sinica, 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [12] Li Zhao-Xin, Zou Jian, Cai Jin-Fang, Shao Bin. Entanglement between charge qubit and quantized field. Acta Physica Sinica, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [13] Hu Yao-Hua. Entropy exchange and entanglement in the multi-photon J-C model of a moving atom. Acta Physica Sinica, 2012, 61(12): 120302. doi: 10.7498/aps.61.120302
    [14] Luo Hui-Ling, Ling Xiao-Hui, Zhou Xin-Xing, Luo Hai-Lu. Spin-orbit interaction of a light beam under normal incidence at a sharp interface and its enhancement. Acta Physica Sinica, 2020, 69(3): 034202. doi: 10.7498/aps.69.20191218
    [15] Hu Guo-Qi, Li Kang. . Acta Physica Sinica, 2002, 51(6): 1208-1213. doi: 10.7498/aps.51.1208
    [16] ZHU DONG-PEI, WANG REN-CHUAN, WANG GUI-XING. STATISTICAL ANGLE OF QUANTUM MIXED STATES. Acta Physica Sinica, 1992, 41(4): 543-549. doi: 10.7498/aps.41.543
    [17] Fan Hong-Yi, Lou Sen-Yue, Pan Xiao-Yin, Da Cheng. Quantum mechanics mixed state representation. Acta Physica Sinica, 2014, 63(19): 190302. doi: 10.7498/aps.63.190302
    [18] Zhou Bing-Ju, Liu Ming-Wei, Liu Xiao-Juan, Fang Mao-Fa, Zhou Qing-Ping. Negative quantum conditional entropy and the entanglement measure of a kind of mixed state of bipartite quantum system. Acta Physica Sinica, 2007, 56(7): 3937-3944. doi: 10.7498/aps.56.3937
    [19] Pan Feng, Lu Guo-Ying. Classification and quantification of qubit and qutrit multipartite pure state entanglement. Acta Physica Sinica, 2007, 56(4): 1895-1905. doi: 10.7498/aps.56.1895
    [20] QU HAI, ZHOU SHI-PING. VORTEX LATTICE IN A HIGH-Tc SUPERCONDUCTOR OF MIXED PAIRING SYMMETRY. Acta Physica Sinica, 1999, 48(2): 352-362. doi: 10.7498/aps.48.352
  • Citation:
Metrics
  • Abstract views:  1609
  • PDF Downloads:  481
  • Cited By: 0
Publishing process
  • Received Date:  27 January 2011
  • Accepted Date:  23 April 2011
  • Published Online:  20 January 2012

Geometric quantum phase for three-level mixed state

  • 1. School of Nuclear Engineering & Technology East China Institute of Technology, Fuzhou 344000, China;
  • 2. Department of Physics, Anqing Teachers College, Anqing 246011, China;
  • 3. School of Physics and Technology,Wuhan University, Wuhan 430072, China;
  • 4. College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grants No.10775108), the Natural Science Foundation of Jiangxi (Grants No. 2010GZW0026), and the Foundation of Science and Technology of Education Office of Jiangxi Province (Grant No. GJJ10404).

Abstract: By expanding the density matrix of the open system in terms of Gell-mann matrix in a three-level system, we parameterize coefficients of expansion by some azimuthal angles and find an identity mapping of the density matrices onto interior points of the unit Poincaré sphere. Thus, the relations between the points on the unit Poincaré sphere and wave functions are extended to connect the interior points in the sphere with the nonunit vector rays corresponding to an open system in complex Hilbert space. Thus,the geometric phases for the open system are proposed to be observed by the nonunit vector rays,where the geometric phase of the pure state is the limiting case of our definition. The results show that this geometric phase merely with duplicate three-dimensional Hilbert projection space geometry structure related, has nothing to do with the open system concrete evolution way; and it depends on population inversion and is a slippy and single-value curve of Bloch radius. Therefore, the mixed state of open system retains indeed a memory of its motion in the form of a geometric phase factor.

Reference (26)

Catalog

    /

    返回文章
    返回