Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of a gyrotron oscillator with corrugated interaction cavity

Han Yu Yuan Xue-Song Ma Chun-Yan Yan Yang

Study of a gyrotron oscillator with corrugated interaction cavity

Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang
PDF
Get Citation
  • Based on the nonlinear self-consistent theory and the three-dimensional electromagnetic simulation software CST, the beam-wave interaction of gyrotron with irregular cross section is studied. Through importing high frequency fields which are the results of CST, the beam-wave interaction efficiency, coupling coefficient and starting current can be obtained. In addition, a 0.4 THz third harmonic TE33 mode gyrotron with a corrugated interaction cavity is presented according to this approach. The gyrotron with a 40.5 kV/1 A electron beam, magnetic field of 5.09 T, and pitch factor of 1.5 can produce radiation with an output power of 3.3 kW.
      Corresponding author: Yuan Xue-Song, yuanxs@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61101041, 60877058), the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2009J048).
    [1]

    Siegel P H 2002 IEEE Trans. Microwave Theory and Techniques 5 910

    [2]

    Glyavin M Y, Luchinin A G, Golubiatnikov G Y 2008 Phys. Rev. Lett. 100 015101

    [3]

    Agusu L, Idehara T, Mori H, Saito T, Ogawa I, Mitsudo S 2007 Int. J. Infrared Millim. Waves 28 315

    [4]

    Bratman V L, Kalynov Y K, Manuilov V N 2009 Phys. Rev. Lett. 102 245101

    [5]

    Bandurkin I V, Bratman V L, Savilov A V, Samsonov S V, Volkov A B 2009 Phys. Plasmas 16 070701

    [6]

    Danly B G, Temkin R J 1986 Phys. Fluids 29 561

    [7]

    Liu S G 1987 Theory for Relativistic Electronics (Beijing: Science Press) p253 (in Chinese) [刘盛纲 1987 相对论电子学 (北京:科学出版社) p253]

    [8]

    Zhang K Q 2001 Theory of Microwave and Photoelectronics (Beijing: Electronic Industrial Press) p235 (in Chinese) [张克潜 2001 微波与光电子学中的电磁理论 (北京:电子工业出版社) p235]

    [9]

    Hornstein M K, Bajaj V S, Griffin R G, Kreischer K E, Shapiro M A, Sirigiri J R, Temkin R J 2005 IEEE Trans. Electron Dev. 52 798

    [10]

    Li H F, Du P Z, Yang S W, Xie Z L, Zhou X L, Wan H R, Huang Y 2000 Acta Phys. Sin. 49 312 (in Chinese) [李宏福, 杜品忠, 杨仕文, 谢仲怜, 周晓岚, 万洪蓉, 黄勇 2000 物理学报 49 312]

    [11]

    Yuan X S, Yan Y, Liu S G 2011 Acta Phys. Sin. 60 014102 (in Chinese) [袁学松, 鄢扬, 刘盛纲 2011 物理学报 60 014102]

    [12]

    Yuan X S, Yan Y, Liu S G 2009 Acta Electron. Sin. 37 335 (in Chinese) [袁学松, 鄢扬, 刘盛纲 2009 电子学报 37 335]

    [13]

    Yuan X S, Lan Y, Ma C Y, Han Y, Yan Y 2010 Phys. Plasmas 18 103115

  • [1]

    Siegel P H 2002 IEEE Trans. Microwave Theory and Techniques 5 910

    [2]

    Glyavin M Y, Luchinin A G, Golubiatnikov G Y 2008 Phys. Rev. Lett. 100 015101

    [3]

    Agusu L, Idehara T, Mori H, Saito T, Ogawa I, Mitsudo S 2007 Int. J. Infrared Millim. Waves 28 315

    [4]

    Bratman V L, Kalynov Y K, Manuilov V N 2009 Phys. Rev. Lett. 102 245101

    [5]

    Bandurkin I V, Bratman V L, Savilov A V, Samsonov S V, Volkov A B 2009 Phys. Plasmas 16 070701

    [6]

    Danly B G, Temkin R J 1986 Phys. Fluids 29 561

    [7]

    Liu S G 1987 Theory for Relativistic Electronics (Beijing: Science Press) p253 (in Chinese) [刘盛纲 1987 相对论电子学 (北京:科学出版社) p253]

    [8]

    Zhang K Q 2001 Theory of Microwave and Photoelectronics (Beijing: Electronic Industrial Press) p235 (in Chinese) [张克潜 2001 微波与光电子学中的电磁理论 (北京:电子工业出版社) p235]

    [9]

    Hornstein M K, Bajaj V S, Griffin R G, Kreischer K E, Shapiro M A, Sirigiri J R, Temkin R J 2005 IEEE Trans. Electron Dev. 52 798

    [10]

    Li H F, Du P Z, Yang S W, Xie Z L, Zhou X L, Wan H R, Huang Y 2000 Acta Phys. Sin. 49 312 (in Chinese) [李宏福, 杜品忠, 杨仕文, 谢仲怜, 周晓岚, 万洪蓉, 黄勇 2000 物理学报 49 312]

    [11]

    Yuan X S, Yan Y, Liu S G 2011 Acta Phys. Sin. 60 014102 (in Chinese) [袁学松, 鄢扬, 刘盛纲 2011 物理学报 60 014102]

    [12]

    Yuan X S, Yan Y, Liu S G 2009 Acta Electron. Sin. 37 335 (in Chinese) [袁学松, 鄢扬, 刘盛纲 2009 电子学报 37 335]

    [13]

    Yuan X S, Lan Y, Ma C Y, Han Y, Yan Y 2010 Phys. Plasmas 18 103115

  • [1] YU SHENG, LI HONG-FU, XIE ZHONG-LIAN, LUO YONG. A NONLINEAR SIMULATION ON BEAM-WAVE INTERACTION FOR HIGH-HARMONIC COMPLEX CAVITY GYROTRON WITH RADUAL TRANSITION. Acta Physica Sinica, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
    [2] LI HONG-FU, XIE ZHONG-LIAN, LUO YONG, YU SHENG. A NONLINEAR ANALYSIS ON 8mm BAND THIRD-HARMONIC COMPLEX CAVITY GYROTRON WITH GRADUAL TRANSITION. Acta Physica Sinica, 2001, 50(10): 1979-1983. doi: 10.7498/aps.50.1979
    [3] Huang Li-Ping, Hong Bin-Bin, Liu Chang, Tang Chang-Jian. Study on 220 GHz third harmonic photonic band gap cavity gyrotron oscillator. Acta Physica Sinica, 2014, 63(11): 118401. doi: 10.7498/aps.63.118401
    [4] Wang Hu, Shen Wen-Yuan, Geng Zhi-Hui, Xu Shou-Xi, Wang Bin, Du Chao-Hai, Liu Pu-Kun. Stady on a high efficient Denisov-type launcher for high-power gyrotron oscillators. Acta Physica Sinica, 2013, 62(23): 238401. doi: 10.7498/aps.62.238401
    [5] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [6] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Research of continuous wave pumping waveguide to generate terahertz laser. Acta Physica Sinica, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [7] Fan Guo-Li, Jiang Yue-Song, Liu Li, Li Fang. Analysis on high frequency performance of THz GaAs Schottky mixer diode. Acta Physica Sinica, 2010, 59(8): 5374-5381. doi: 10.7498/aps.59.5374
    [8] Kaz Hirakawa, He Bo-Yong, Chen Lin, Huang Yuan-Shen, Jia Xiao-Xuan, Zhang Da-Wei, Zhuang Song-Lin, Zhu Yi-Ming. Terahertz power dissipation spectra of electrons in bulk GaAs under high electric fields at low temperature. Acta Physica Sinica, 2009, 58(4): 2692-2696. doi: 10.7498/aps.58.2692
    [9] Bai Jin-Jun, Wang Chang-Hui, Huo Bing-Zhong, Wang Xiang-Hui, Chang Sheng-Jiang. A broadband low loss and high birefringence terahertz photonic bandgap photonic crystal fiber. Acta Physica Sinica, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [10] Li Wen-Ping, Zhang Ya-Xin, Liu Sheng-Gang, Liu Da-Gang. Kinetic theory of a novel THZ gyrotron with three-mirror quasi-optical cavity. Acta Physica Sinica, 2008, 57(5): 2875-2881. doi: 10.7498/aps.57.2875
  • Citation:
Metrics
  • Abstract views:  2094
  • PDF Downloads:  590
  • Cited By: 0
Publishing process
  • Received Date:  16 May 2011
  • Accepted Date:  04 July 2011
  • Published Online:  20 March 2012

Study of a gyrotron oscillator with corrugated interaction cavity

    Corresponding author: Yuan Xue-Song, yuanxs@uestc.edu.cn
  • 1. School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61101041, 60877058), the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2009J048).

Abstract: Based on the nonlinear self-consistent theory and the three-dimensional electromagnetic simulation software CST, the beam-wave interaction of gyrotron with irregular cross section is studied. Through importing high frequency fields which are the results of CST, the beam-wave interaction efficiency, coupling coefficient and starting current can be obtained. In addition, a 0.4 THz third harmonic TE33 mode gyrotron with a corrugated interaction cavity is presented according to this approach. The gyrotron with a 40.5 kV/1 A electron beam, magnetic field of 5.09 T, and pitch factor of 1.5 can produce radiation with an output power of 3.3 kW.

Reference (13)

Catalog

    /

    返回文章
    返回