搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

220GHz三次谐波光子带隙谐振腔回旋管振荡器的研究

黄丽萍 洪斌斌 刘畅 唐昌建

引用本文:
Citation:

220GHz三次谐波光子带隙谐振腔回旋管振荡器的研究

黄丽萍, 洪斌斌, 刘畅, 唐昌建

Study on 220 GHz third harmonic photonic band gap cavity gyrotron oscillator

Huang Li-Ping, Hong Bin-Bin, Liu Chang, Tang Chang-Jian
PDF
导出引用
  • 提出了一种220 GHz三次谐波光子带隙谐振腔回旋管振荡器的物理结构. 利用光子晶体高频带隙确定了回旋管高阶电磁模式类TE63和三次电子回旋模的互作用状态. 通过非线性理论,研究了腔内类TE63和类TE92模的弱模式竞争,得到了有利于回旋管三次谐波起振的工作条件和起振过程的非线性特征,其结果与粒子模拟基本一致. 研究表明,利用光子带隙谐振腔的禁带特征,回旋管中高阶电磁模与高次电子回旋模能够发生有效的互作用关系被得到证实.
    A design of 220 GHz third harmonic photonic band gap cavity gyrotron oscillator is proposed. Higher photonic crystal band gap is used to ensure the interaction between the high order electromagnetic mode (TE63-like) and the third harmonic electron cyclotron mode in gyrotron. The weak mode competition between TE63-like and TE92-like mode is studied by using a nonlinear theory, and the working conditions that ensure the start-up of the gyrotron to work in the third harmonic mode, as well as the nonlinear characteristics during the start-up process, are achieved. These results are in good agreement with the PIC (particle-in-cell) simulation. Our study shows that by using the photonic crystal as the high-frequency structure of gyrotron, high-order electromagnetic modes can interact with harmonic electron cyclotron modes efficiently.
    • 基金项目: 国家ITER专项(批准号:2013GB107002)资助的课题.
    • Funds: Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant No. 2013GB107002).
    [1]

    Granatstein V L, Levush B, Danly B G, Parker R K 1997 Plasma Science, IEEE Transactions on 25 1322

    [2]

    Chu K R 2004 Reviews of Modern Physics 76 489

    [3]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin A, Manuilov V, Zapevalov V 2009 Plasma Science, IEEE Transactions on 37 36

    [4]

    Shapiro M A, Brown W J, Mastovsky, I, Sirigiri J R, Temkin R J 2001 Physical Review Special Topics-Accelerators and beams 4 042001

    [5]

    Smirnova E I, Kesar A S, Mastovsky I, Shapiro M A, Temkin R J 2005 Physical review letters 95 074801

    [6]

    Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Physical Review Letters 86 5628

    [7]

    Cui N D, Liang J Q, Liang Z Z, Wang W B 2012 Chin Phys B 21 034215

    [8]

    Feng S, Wang Y Q 2011 Chin. Phys. B 20 054209

    [9]

    Smirnova E I, Chen C, Shapiro M A, Sirigiri J R, Temkin R J 2002 Journal of Applied Physics 91 960

    [10]

    Liu C, Luo Y T, Tang C J, Liu P K 2009 Acta Phys. Sin. 58 8174 (in Chinese)[刘畅, 罗尧天, 唐昌建, 刘濮鲲 2009 物理学报 58 8174]

    [11]

    Hao B L, Liu P K, Tang C J 2006 Acta Phys. Sin. 55 1862 (in Chinese)[郝保良, 刘濮鲲, 唐昌建 2006 物理学报 55 1862]

    [12]

    Smirnova E I, Chen C 2001 Massachusetts Institute of Technology

    [13]

    Danly B G, Temkin R J 1986 Physics of Fluids 29 561

    [14]

    Gaofeng L, Xiaoan C, Changjian T 2011 Journal of Physics D: Applied Physics 44 295102

    [15]

    Luo Y T, Tang C J 2011 Acta Phys. Sin. 60 014104 (in Chinese) [罗尧天, 唐昌建 2011 物理学报 60 014104]

    [16]

    Yu S, Li H F, Xie Z L, Luo Y 2000 Acta Phys. Sin 49 2459 (in Chinese) [喻胜, 李宏福, 谢仲怜, 罗勇 2000 物理学报 49 2459]

    [17]

    Fliflet A W 1986 International Journal of Electronics Theoretical and Experimental 61 1049

  • [1]

    Granatstein V L, Levush B, Danly B G, Parker R K 1997 Plasma Science, IEEE Transactions on 25 1322

    [2]

    Chu K R 2004 Reviews of Modern Physics 76 489

    [3]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin A, Manuilov V, Zapevalov V 2009 Plasma Science, IEEE Transactions on 37 36

    [4]

    Shapiro M A, Brown W J, Mastovsky, I, Sirigiri J R, Temkin R J 2001 Physical Review Special Topics-Accelerators and beams 4 042001

    [5]

    Smirnova E I, Kesar A S, Mastovsky I, Shapiro M A, Temkin R J 2005 Physical review letters 95 074801

    [6]

    Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Physical Review Letters 86 5628

    [7]

    Cui N D, Liang J Q, Liang Z Z, Wang W B 2012 Chin Phys B 21 034215

    [8]

    Feng S, Wang Y Q 2011 Chin. Phys. B 20 054209

    [9]

    Smirnova E I, Chen C, Shapiro M A, Sirigiri J R, Temkin R J 2002 Journal of Applied Physics 91 960

    [10]

    Liu C, Luo Y T, Tang C J, Liu P K 2009 Acta Phys. Sin. 58 8174 (in Chinese)[刘畅, 罗尧天, 唐昌建, 刘濮鲲 2009 物理学报 58 8174]

    [11]

    Hao B L, Liu P K, Tang C J 2006 Acta Phys. Sin. 55 1862 (in Chinese)[郝保良, 刘濮鲲, 唐昌建 2006 物理学报 55 1862]

    [12]

    Smirnova E I, Chen C 2001 Massachusetts Institute of Technology

    [13]

    Danly B G, Temkin R J 1986 Physics of Fluids 29 561

    [14]

    Gaofeng L, Xiaoan C, Changjian T 2011 Journal of Physics D: Applied Physics 44 295102

    [15]

    Luo Y T, Tang C J 2011 Acta Phys. Sin. 60 014104 (in Chinese) [罗尧天, 唐昌建 2011 物理学报 60 014104]

    [16]

    Yu S, Li H F, Xie Z L, Luo Y 2000 Acta Phys. Sin 49 2459 (in Chinese) [喻胜, 李宏福, 谢仲怜, 罗勇 2000 物理学报 49 2459]

    [17]

    Fliflet A W 1986 International Journal of Electronics Theoretical and Experimental 61 1049

计量
  • 文章访问数:  1852
  • PDF下载量:  787
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-28
  • 修回日期:  2014-03-05
  • 刊出日期:  2014-06-05

220GHz三次谐波光子带隙谐振腔回旋管振荡器的研究

  • 1. 四川大学物理科学与技术学院, 成都 610064;
  • 2. 四川大学高能量密度物理及技术教育部重点实验室, 成都 610064;
  • 3. 解放军后勤工程学院基础部, 重庆 400016
    基金项目: 

    国家ITER专项(批准号:2013GB107002)资助的课题.

摘要: 提出了一种220 GHz三次谐波光子带隙谐振腔回旋管振荡器的物理结构. 利用光子晶体高频带隙确定了回旋管高阶电磁模式类TE63和三次电子回旋模的互作用状态. 通过非线性理论,研究了腔内类TE63和类TE92模的弱模式竞争,得到了有利于回旋管三次谐波起振的工作条件和起振过程的非线性特征,其结果与粒子模拟基本一致. 研究表明,利用光子带隙谐振腔的禁带特征,回旋管中高阶电磁模与高次电子回旋模能够发生有效的互作用关系被得到证实.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回