Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The effect of the divertor operation regimes on the plasma parallel flow in the edge of a tokamak

Ou Jing Yang Jin-Hong

The effect of the divertor operation regimes on the plasma parallel flow in the edge of a tokamak

Ou Jing, Yang Jin-Hong
PDF
Get Citation
  • Based on the variations of the static pressure along the magnetic field line in different divertor operation regimes, the effects of the divertor operation regimes on the plasma parallel flow at the edge of a tokamak are investigated using a one-dimensional fluid model. In low recycling regime, the variation of the static pressure along the field line is obvious from the scrape-off layer (SOL) region near the X-point, and the variation tendency is the same as that of the density. The Mach number of the plasma parallel flow increases along the magnetic field line and the variation is from gentle to sharp. In high recycling regime, the static pressure does not change much except in the near divertor plate region, as a result, the Mach number of the plasma parallel flow varies gently in the SOL region and the most of the divertor region, and it increases rapidly in the near divertor plate region. The variation of the static pressure in weak divertor detachment regime is similar to that in high recycling regime, but the static pressure shows decrease tendency in the SOL region near the X-point, consequently, the Mach number of the plasma parallel flow at X-point is larger than that in high recycling regime. In strong divertor detachment regime, static pressure decreases obviously in the SOL region and away from the divertor plate region, where the static pressure decreases rapidly, and a high Mach plasma parallel flow is observed. Static pressure decreasing while dynamic pressure increasing to keep the total pressure conservation is shown to be a possible cause of the high Mach parallel flow.
      Corresponding author: , ouj@ipp.ac.cn
    • Funds: Project supported by the Natinal Natural Science Foundation of China (Grant No.11105176), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.085FCQ0123), and the Chinese National Fusion Project for ITER (Grant No.2009GB106002).
    [1]

    HongWY,Yan LW,Wang E Y,Li Q,Qian J 2005 Acta Phys.Sin.54 173 (in Chinese)[洪文玉,严龙文,王恩耀,李强,钱俊 2005 物理学报 54 173]

    [2]

    Zhang W 2010 Ph.D Dissertation (Hefei:Institute of Plasma Physics,Chinese Academy of Sciences)(in Chinese)[张炜 2010 博士学位论文 (合肥:中科院等离子体物理研究所)]

    [3]

    Cheng F Y 2004 Ph.D Dissertation (Chengdu:Southwestern Institute of Physics)(in Chinese)[程发银 2004 博士学位论文(成都:核工业西南物理研究院)]

    [4]

    Cui Z Y,Sun P,Pan Y D,Li W,Wang Q M,Cao Z,Wang M X 2006 Chin.Phys.15 585

    [5]

    Yao L H,Yuan B S,Feng B B,Chen C Y,Hong WY,Li Y L 2007 Chin.Phys.16 200

    [6]

    Stangeby P C 2000 The Plasma Boundaries of Magnetic Fusion Devices (London:Institute of Physics Publishing)p487

    [7]

    taslas M,Herrmann A,Kallenbach A,Müller H W,Neuhauser J,Rohde V,Tsois N,Wischmeier M,ASDEX-U team 2007Plasma Phys.Control Fusion 49 857

    [8]

    Asakura N,Sakurai S,Itami K,Naito K,Takenaga H,Higashijima S,Koide Y,Sakamoto Y,Kubo H,Porter G D 2003 J.Nucl.Mater.313-316 820

    [9]

    Asakura N 2007 J.Nucl.Mater.363-365 41

    [10]

    Wesson J 1997 Tokamaks (New York:Oxford University Press)p427

    [11]

    li Q L,Zheng Y Z,Cheng F Y,Deng X B,Deng D S,You P L,Liu G A,Chen X D 2001 Acta Phys.Sin.50 507 (in Chinese)[李奇良,郑永真,程发银,邓小波,邓冬生,游佩林,刘贵昂,陈向东 2001 物理学报 50 507]

    [12]

    Stangeby P C 1993 Nucl.Fusion 33 1695

    [13]

    Hatayama A,Segawa H,Schneider R,Coster D P,Hayashi N,Sakurai S,Asakura N,Ogasawara M 2000 Nucl.Fusion 40 2009

    [14]

    Schneider R,Bonnin X,Coster D P,Kastelewicz H,Reiter D,Rozhansky V A,Braams J 2006 Contrib.Plasma Phys.46 3

    [15]

    Lehnen M,Brix M,Samm U Schweer B,Unterberg B,the TEXTOR-team 2003 Nucl.Fusion 43 168

    [16]

    Ou J,Zhu S Z 2007 Plasma Sci.& Technol.9 417

    [17]

    Nakazawa S,Nakajima N,Okamoto M,Ohyabu N 2000 Plasma Phys.Control.Fusion 42 401

    [18]

    Fundamenski W,Stangeby P C,Elder J D 1999 J.Nucl.Mater.266-269 1045

  • [1]

    HongWY,Yan LW,Wang E Y,Li Q,Qian J 2005 Acta Phys.Sin.54 173 (in Chinese)[洪文玉,严龙文,王恩耀,李强,钱俊 2005 物理学报 54 173]

    [2]

    Zhang W 2010 Ph.D Dissertation (Hefei:Institute of Plasma Physics,Chinese Academy of Sciences)(in Chinese)[张炜 2010 博士学位论文 (合肥:中科院等离子体物理研究所)]

    [3]

    Cheng F Y 2004 Ph.D Dissertation (Chengdu:Southwestern Institute of Physics)(in Chinese)[程发银 2004 博士学位论文(成都:核工业西南物理研究院)]

    [4]

    Cui Z Y,Sun P,Pan Y D,Li W,Wang Q M,Cao Z,Wang M X 2006 Chin.Phys.15 585

    [5]

    Yao L H,Yuan B S,Feng B B,Chen C Y,Hong WY,Li Y L 2007 Chin.Phys.16 200

    [6]

    Stangeby P C 2000 The Plasma Boundaries of Magnetic Fusion Devices (London:Institute of Physics Publishing)p487

    [7]

    taslas M,Herrmann A,Kallenbach A,Müller H W,Neuhauser J,Rohde V,Tsois N,Wischmeier M,ASDEX-U team 2007Plasma Phys.Control Fusion 49 857

    [8]

    Asakura N,Sakurai S,Itami K,Naito K,Takenaga H,Higashijima S,Koide Y,Sakamoto Y,Kubo H,Porter G D 2003 J.Nucl.Mater.313-316 820

    [9]

    Asakura N 2007 J.Nucl.Mater.363-365 41

    [10]

    Wesson J 1997 Tokamaks (New York:Oxford University Press)p427

    [11]

    li Q L,Zheng Y Z,Cheng F Y,Deng X B,Deng D S,You P L,Liu G A,Chen X D 2001 Acta Phys.Sin.50 507 (in Chinese)[李奇良,郑永真,程发银,邓小波,邓冬生,游佩林,刘贵昂,陈向东 2001 物理学报 50 507]

    [12]

    Stangeby P C 1993 Nucl.Fusion 33 1695

    [13]

    Hatayama A,Segawa H,Schneider R,Coster D P,Hayashi N,Sakurai S,Asakura N,Ogasawara M 2000 Nucl.Fusion 40 2009

    [14]

    Schneider R,Bonnin X,Coster D P,Kastelewicz H,Reiter D,Rozhansky V A,Braams J 2006 Contrib.Plasma Phys.46 3

    [15]

    Lehnen M,Brix M,Samm U Schweer B,Unterberg B,the TEXTOR-team 2003 Nucl.Fusion 43 168

    [16]

    Ou J,Zhu S Z 2007 Plasma Sci.& Technol.9 417

    [17]

    Nakazawa S,Nakajima N,Okamoto M,Ohyabu N 2000 Plasma Phys.Control.Fusion 42 401

    [18]

    Fundamenski W,Stangeby P C,Elder J D 1999 J.Nucl.Mater.266-269 1045

  • [1] CHEN XIANG-DONG, LI QI-LIANG, ZHENG YONG-ZHEN, CHENG FA-YIN, DENG XIAO-BO, DENG DONG-SHENG, YOU PEI-LIN, LIU GUI-ANG. THE ANALYTIC STUDY OF PLASMA TRANSPORT IN TOKAMAK DIVERTOR REGION AND SCRAPE OFF LAYER. Acta Physica Sinica, 2001, 50(3): 507-511. doi: 10.7498/aps.50.507
    [2] Sun Zhen-Yue, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen. Simulation of erosion of the tungsten wall by impurities in the divertor plasma. Acta Physica Sinica, 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [3] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [4] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen. Numerical study of thermal erosion and topographical change of divertor target plates induced by type-I edge-localized modes. Acta Physica Sinica, 2017, 66(3): 035201. doi: 10.7498/aps.66.035201
    [5] Li Liu-He, Liu Hong-Tao, Luo Ji, Xu Yi. Plasma distribution properties of vacuum ribbon-like cathodic arc plasma fliter and Raman studies of diamond-like carbon films perpared by it. Acta Physica Sinica, 2016, 65(6): 065202. doi: 10.7498/aps.65.065202
    [6] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [7] Zhang Guo-Peng, Wang Chen, Gu Yuan, Fu Si-Zu, Zhou Guan-Lin, Wu Jiang, Wang Wei, Sun Yu-Qin, Dong Jia-Xin, Sun Jin-Ren, Wang Rui-Rong, Ni Yuan-Long, Wan Bing-Gen, Wang Shi-Ji, Huang Guang-Long, Lin Zun-Qi. . Acta Physica Sinica, 2002, 51(4): 847-851. doi: 10.7498/aps.51.847
    [8] Zhao Chong-Xiao, Qi Liang-Wen, Yan Hui-Jie, Wang Ting-Ting, Ren Chun-Sheng. Influence of discharge parameters on pulsed discharge of coaxial gun in deflagration mode. Acta Physica Sinica, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [9] Zou Xiu, Liu Hui-Ping, Gu Xiu-E. Sheath structure of a magnetized plasma. Acta Physica Sinica, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [10] Wang Dao-Yong, Ma Jin-Xiu, Li Yi-Ren, Zhang Wen-Gui. Sheath structure of a hot-cathode in plasma. Acta Physica Sinica, 2009, 58(12): 8432-8439. doi: 10.7498/aps.58.8432
  • Citation:
Metrics
  • Abstract views:  2015
  • PDF Downloads:  656
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2011
  • Accepted Date:  05 April 2012
  • Published Online:  05 April 2012

The effect of the divertor operation regimes on the plasma parallel flow in the edge of a tokamak

    Corresponding author: ouj@ipp.ac.cn
  • 1. Institute of Plasma Physics, Chinese Academy of Sciences, Heifei 230031, China;
  • 2. Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Heifei 230031, China
Fund Project:  Project supported by the Natinal Natural Science Foundation of China (Grant No.11105176), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.085FCQ0123), and the Chinese National Fusion Project for ITER (Grant No.2009GB106002).

Abstract: Based on the variations of the static pressure along the magnetic field line in different divertor operation regimes, the effects of the divertor operation regimes on the plasma parallel flow at the edge of a tokamak are investigated using a one-dimensional fluid model. In low recycling regime, the variation of the static pressure along the field line is obvious from the scrape-off layer (SOL) region near the X-point, and the variation tendency is the same as that of the density. The Mach number of the plasma parallel flow increases along the magnetic field line and the variation is from gentle to sharp. In high recycling regime, the static pressure does not change much except in the near divertor plate region, as a result, the Mach number of the plasma parallel flow varies gently in the SOL region and the most of the divertor region, and it increases rapidly in the near divertor plate region. The variation of the static pressure in weak divertor detachment regime is similar to that in high recycling regime, but the static pressure shows decrease tendency in the SOL region near the X-point, consequently, the Mach number of the plasma parallel flow at X-point is larger than that in high recycling regime. In strong divertor detachment regime, static pressure decreases obviously in the SOL region and away from the divertor plate region, where the static pressure decreases rapidly, and a high Mach plasma parallel flow is observed. Static pressure decreasing while dynamic pressure increasing to keep the total pressure conservation is shown to be a possible cause of the high Mach parallel flow.

Reference (18)

Catalog

    /

    返回文章
    返回